
EPICS Documentation Sandbox

Timo Korhonen

Mar 06, 2024

RECORD REFERENCE:

1 EPICS Record Reference Manual 1

2 MRF Timing System Reference 275

Index 423

i

ii

CHAPTER

ONE

EPICS RECORD REFERENCE MANUAL

1.1 EPICS Process Database Concepts

Table of Contents

• EPICS Process Database Concepts

– The EPICS Process Database

– Database Functionality Specification

– Scanning Specification

∗ Periodic Scanning

∗ Event Scanning

∗ I/O Interrupt Events

∗ User-defined Events

∗ Passive Scanning

∗ Channel Access Puts to Passive Scanned Records

∗ Database Links to Passive Record

∗ Forward Links

∗ Channel Access Links

∗ Maximize Severity Attribute

∗ Phase

∗ PVAccess Links

– Address Specification

∗ Hardware Addresses

∗ Database Addresses

– Conversion Specification

∗ Discrete Conversions

∗ Analog Conversions

∗ Linear Conversions

1

EPICS Documentation Sandbox

∗ Breakpoint Conversions

– Alarm Specification

∗ Alarm Severity

∗ Alarm Status

∗ Alarm Conditions Configured in the Database

∗ Alarm Handling

– Monitor Specification

∗ Rate Limits

∗ Client specific Filtering

– Control Specification

∗ Closing an Analog Control Loop

∗ Configuring an Interlock

1.1.1 The EPICS Process Database

An EPICS-based control system contains one or more Input Output Controllers, IOCs. Each IOC loads one or more
databases. A database is a collection of records of various types.

A Record is an object with:

• A unique name

• A behavior defined by its type

• Controllable properties (fields)

• Optional associated hardware I/O (device support)

• Links to other records

There are several different types of records available. In addition to the record types that are included in the EPICS
base software package, it is possible (although not recommended unless you absolutely need) to create your own record
type to perform some specific tasks.

Each record comprises a number of fields. Fields can have different functions, typically they are used to configure how
the record operates, or to store data items.

Below are short descriptions for the most commonly used record types:

Analog Input and Output (AI and AO) records can store an analog value, and are typically used for things like set-
points, temperatures, pressure, flow rates, etc. The records perform number of functions like data conversions, alarm
processing, filtering, etc.

Binary Input and Output (BI and BO) records are generally used for commands and statuses to and from equipment.
As the name indicates, they store binary values like On/Off, Open/Closed and so on.

Calc and Calcout records can access other records and perform a calculation based on their values. (E.g. calculate
the efficiency of a motor by a function of the current and voltage input and output, and converting to a percentage for
the operator to read).

2 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

1.1.2 Database Functionality Specification

This chapter covers the general functionality that is found in all database records. The topics covered are I/O scanning,
I/O address specification, data conversions, alarms, database monitoring, and continuous control:

• Scanning Specification describes the various conditions under which a record is processed.

• Address Specification explains the source of inputs and the destination of outputs.

• Conversion Specification covers data conversions from transducer interfaces to engineering units.

• Alarm Specification presents the many alarm detection mechanisms available in the database.

• Monitor Specification details the mechanism, which notifies operators about database value changes.

• Control Specification explains the features available for achieving continuous control in the database.

These concepts are essential in order to understand how the database interfaces with the process.

The EPICS databases can be created by manual creation of a database “myDatabase.db” text file or using visual tools
(VDCT, CapFast). Visual Database Configuration Tool (VDCT), a java application from Cosylab, is a tool for database
creation/editing that runs on Linux, Windows, and Sun. The illustrations in this document have been created with
VDCT.

1.1.3 Scanning Specification

Scanning determines when a record is processed. A record is processed when it performs any actions related to its
data. For example, when an output record is processed, it fetches the value which it is to output, converts the value, and
then writes that value to the specified location. Each record must specify the scanning method that determines when it
will be processed. There are three scanning methods for database records:

(1) periodic,

(2) event, and

(3) passive.

Periodic scanning occurs on set time intervals.

Event scanning occurs on either an I/O interrupt event or a user-defined event.

Passive scanning occurs when the records linked to the passive record are scanned, or when a value is “put” into a
passive record through the database access routines.

For periodic or event scanning, the user can also control the order in which a set of records is processed by using the
PHASE mechanism. The number in the

PHAS field allows to define the relative order in which records are processed within a scan cycle:

• Records with PHAS=0 are processed first

• Then those with PHAS=1, PHAS=2, etc.

For event scanning, the user can control the priority at which a record will process. The PRIO field selects
Low/Medium/High priority for Soft event and I/O Interrupts.

In addition to the scan and the phase mechanisms, there are data links and forward processing links that can be used to
cause processing in other records.

1.1. EPICS Process Database Concepts 3

EPICS Documentation Sandbox

Periodic Scanning

The periodic scan tasks run as close as possible to the specified frequency. When each periodic scan task starts, it calls
the gettime routine, then processes all of the records on this period. After the processing, gettime is called again and
this thread sleeps the difference between the scan period and the time to process the records. For example, if it takes
100 milliseconds to process all records with “1 second” scan period, then the 1 second scan period will start again 900
milliseconds after completion. The following periods for scanning database records are available by default, though
EPICS can be configured to recognize more scan periods:

• 10 second

• 5 second

• 2 second

• 1 second

• .5 second

• .2 second

• .1 second

The period that best fits the nature of the signal should be specified. A five-second interval is adequate for the temper-
ature of a mass of water because it does not change rapidly. However, some power levels may change very rapidly, so
they need to be scanned every 0.5 seconds. In the case of a continuous control loop, where the process variable being
controlled can change quickly, the 0.1 second interval may be the best choice.

For a record to scan periodically, a valid choice must be entered in its SCAN field. Actually, the available choices
depend on the configuration of the menuScan.dbd file. As with most other fields which consists of a menu of choices,
the choices available for the SCAN field can be changed by editing the appropriate .dbd (database definition) file. dbd
files are ASCII files that are used to generate header files that are, in turn, are used to compile the database code. Many
dbd files can be used to configure other things besides the choices of menu fields.

Here is an example of a menuScan.dbd file, which has the default menu choices for all periods listed above as well as
choices for event scanning, passive scanning, and I/O interrupt scanning:

menu(menuScan) {
choice(menuScanPassive,"Passive")
choice(menuScanEvent,"Event")
choice(menuScanI_O_Intr,"I/O Intr")
choice(menuScan10_second,"10 second")
choice(menuScan5_second,"5 second")
choice(menuScan2_second,"2 second")
choice(menuScan1_second,"1 second")
choice(menuScan_5_second,".5 second")
choice(menuScan_2_second,".2 second")
choice(menuScan_1_second,".1 second")

}

The first three choices must appear first and in the order shown. The remaining definitions are for the periodic scan
rates, which must appear in the order slowest to fastest (the order directly controls the thread priority assigned to the
particular scan rate, and faster scan rates should be assigned higher thread priorities). At IOC initialization, the menu
choice strings are read at scan initialization. The number of periodic scan rates and the period of each rate is determined
from the menu choice strings. Thus the periodic scan rates can be changed by changing menuScan.dbd and loading
this version via dbLoadDatabase. The only requirement is that each periodic choice string must begin with a number
and be followed by any of the following unit strings:

• second or seconds

4 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

• minute or minutes

• hour or hours

• Hz or Hertz

For example, to add a choice for 0.015 seconds, add the following line after the 0.1 second choice:

choice(menuScan_015_second, " .015 second")

The range of values for scan periods can be from one clock tick to the maximum number of ticks available on the system
(for example, vxWorks out of the box supports 0.015 seconds or a maximum frequency of 60 Hz). Note, however, that
the order of the choices is essential. The first three choices must appear in the above order. Then the remaining choices
should follow in descending order, the biggest time period first and the smallest last.

Event Scanning

There are two types of events supported in the input/output controller (IOC) database, the I/O interrupt event and the
user-defined event. For each type of event, the user can specify the scheduling priority of the event using the PRIO or
priority field. The scheduling priority refers to the priority the event has on the stack relative to other running tasks.
There are three possible choices: LOW, MEDIUM, or HIGH. A low priority event has a priority a little higher than
Channel Access. A medium priority event has a priority about equal to the median of periodic scanning tasks. A high
priority event has a priority equal to the event scanning task.

I/O Interrupt Events

Scanning on I/O interrupt causes a record to be processed when a driver posts an I/O Event. In many cases these events
are posted in the interrupt service routine. For example, if an analog input record gets its value from an I/O card and it
specifies I/O interrupt as its scanning routine, then the record will be processed each time the card generates an interrupt
(not all types of I/O cards can generate interrupts). Note that even though some cards cannot actually generate interrupts,
some driver support modules can simulate interrupts. In order for a record to scan on I/O interrupts, its SCAN field
must specify I/O Intr.

User-defined Events

The user-defined event mechanism processes records that are meaningful only under specific circumstances. User-
defined events can be generated by the post_event() database access routine. Two records, the event record and the
timer record, are also used to post events. For example, there is the timing output, generated when the process is in
a state where a control can be safely changed. Timing outputs are controlled through Timer records, which have the
ability to generate interrupts. Consider a case where the timer record is scanned on I/O interrupt and the timer record’s
event field (EVNT) contains an event number. When the record is scanned, the user-defined event will be posted. When
the event is posted, all records will be processed whose SCAN field specifies event and whose event number is the same
as the generated event. User-defined events can also be generated through software. Event numbers are configurable
and should be controlled through the project engineer. They only need to be unique per IOC because they only trigger
processing for records in the same IOC.

All records that use the user-defined event mechanism must specify Event in their SCAN field and an event number in
their EVNT field.

1.1. EPICS Process Database Concepts 5

EPICS Documentation Sandbox

Passive Scanning

Passive records are processed when they are referenced by other records through their link fields or when a channel
access put is done to them.

Channel Access Puts to Passive Scanned Records

In this case where a channel access put is done to a record, the field being written has an attribute that determines if this
put causes record processing. In the case of all records, putting to the VAL field causes record processing. Consider a
binary output that has a SCAN of Passive. If an operator display has a button on the VAL field, every time the button
is pressed, a channel access put is sent to the record. When the VAL field is written, the Passive record is processed
and the specified device support is called to write the newly converted RVAL to the device specified in the OUT field
through the device support specified by DTYP. Fields determined to change the way a record behaves, typical cause the
record to process. Another field that would cause the binary output to process would be the ZSV; which is the alarm
severity if the binary output record is in state Zero (0). If the record was in state 0 and the severity of being in that state
changed from No Alarm to Minor Alarm, the only way to catch this on a SCAN Passive record is to process it. Fields
are configured to cause binary output records to process in the bo.dbd file. The ZSV severity is configured as follows:

field(ZSV,DBF_MENU) {
prompt("Zero Error Severity")
promptgroup(GUI_ALARMS)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}

where the line “pp(TRUE)” is the indication that this record is processed when a channel access put is done.

Database Links to Passive Record

The records in the process database use link fields to configure data passing and scheduling (or processing). These
fields are either INLINK, OUTLINK, or FWDLINK fields.

Forward Links

In the database definition file (.dbd) these fields are defined as follows:

field(FLNK,DBF_FWDLINK) {
prompt("Forward Process Link")
promptgroup(GUI_LINKS)
interest(1)

}

If the record that is referenced by the FLNK field has a SCAN field set to “Passive”, then the record is processed after
the record with the FLNK. The FLNK field only causes record processing, no data is passed. In (Figure 1), three
records are shown. The ai record “Input_2” is processed periodically. At each interval, Input_2 is processed. After
Input_2 has read the new input, converted it to engineering units, checked the alarm condition, and posted monitors
to Channel Access, then the calc record “Calculation_2” is processed. Calculation_2 reads the input, performs the
calculation, checked the alarm condition, and posted monitors to Channel Access, then the ao record “Output_2” is
processed. Output_2 reads the desired output, rate limits it, clamps the range, calls the device support for the OUT
field, checks alarms, posts monitors and then is complete.

6 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Figure 1. Input Links

Input links normally fetch data from one field into a field in the referring record. For instance, if the INPA field of a
CALC record is set to Input_3.VAL, then the VAL field is fetched from the Input_3 record and placed in the A field
of the CALC record. These data links have an attribute that specify if a passive record should be processed before the
value is returned. The default for this attribute is NPP (no process passive). In this case, the record takes the VAL field
and returns it. If they are set to PP (process passive), then the record is processed before the field is returned.

In Figure 2), the PP attribute is used. In this example, Output_3 is processed periodically. Record processing first
fetching the DOL field. As the DOL field has the PP attribute set, before the VAL field of Calc_3 is returned, the
record is processed. The first thing done by the ai record Input_3 does is to read the input. It then converts the RVAL
field to engineering units and places this in the VAL field, checks alarms, posts monitors, and then returns. The calc
record then fetches the VAL field field from Input_3, places it in the A field, computes the calculation, checks alarms,
posts monitors, the returns. The ao record, Output_3, then fetches the VAL field from the CALC record, applies rate
of change and limits, write the new value, checks alarms, posts monitors and completes.

Figure 2

In Figure 3) the PP/NPP attribute is used to calculate a rate of change. At 1 Hz, the calculation record is processed.
It fetches the inputs for the calc record in order. As INPA has an attribute of NPP, the VAL field is taken from the ai
record. Before INPB takes the VAL field from the ai record it is processed, as the attribute on this link is PP. The new
ai value is placed in the B field of the calc record. A-B is the VAL field of the ai one second ago and the current VAL
field.

Figure 3

1.1. EPICS Process Database Concepts 7

EPICS Documentation Sandbox

Process Chains

Links can be used to create complex scanning logic. In the forward link example above, the chain of records is deter-
mined by the scan rate of the input record. In the PP example, the scan rate of the chain is determined by the rate of
the output. Either of these may be appropriate depending on the hardware and process limitations.

Care must be taken as this flexibility can also lead to some incorrect configurations. In these next examples we look at
some mistakes that can occur.

In Figure 4) two records that are scanned at 10 Hz make references to the same Passive record. In this case, no alarm
or error is generated. The Passive record is scanned twice at 10 Hz. The time between the two scans depends on what
records are processed between the two periodic records.

Figure 4

In Figure 5), several circular references are made. As the record processing is recursively called for links, the record
containing the link is marked as active during the entire time that the chain is being processed. When one of these
circular references is encountered, the active flag is recognized and the request to process the record is ignored.

Figure 5

8 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Channel Access Links

A Channel Access link is an input link or output link that specifies a link to a record located in another IOC or an input
and output link with one of the following attributes: CA, CP, or CPP.

Channel Access Input Links

If the input link specifies CA, CP, or CPP, regardless of the location of the process variable being referenced, it will
be forced to be a Channel Access link. This is helpful for separating process chains that are not tightly related. If the
input link specifies CP, it also causes the record containing the input link to process whenever a monitor is posted, no
matter what the record’s SCAN field specifies. If the input link specifies CPP, it causes the record to be processed if
and only if the record with the CPP link has a SCAN field set to Passive. In other words, CP and CPP cause the record
containing the link to be processed with the process variable that they reference changes.

Channel Access Output Links

Only CA is appropriate for an output link. The write to a field over channel access causes processing as specified in
Channel Access Puts to Passive Scanned Records.

Channel Access Forward Links

Forward links can also be Channel Access links, either when they specify a record located in another IOC or when they
specify the CA attributes. However, forward links will only be made Channel Access links if they specify the PROC
field of another record.

Maximize Severity Attribute

The Maximize Severity attribute is one of the following :

• NMS (Non-Maximize Severity)

• MS (Maximize Severity)

• MSS (Maximize Status and Severity)

• MSI (Maximize Severity if Invalid)

It determines whether alarm severity is propagated across links. If the attribute is MSI only a severity of IN-
VALID_ALARM is propagated; settings of MS or MSS propagate all alarms that are more severe than the record’s
current severity. For input links the alarm severity of the record referred to by the link is propagated to the record
containing the link. For output links the alarm severity of the record containing the link is propagated to the record
referred to by the link. If the severity is changed the associated alarm status is set to LINK_ALARM, except if the
attribute is MSS when the alarm status will be copied along with the severity.

The method of determining if the alarm status and severity should be changed is called ``maximize severity”. In addition
to its actual status and severity, each record also has a new status and severity. The new status and severity are initially
0, which means NO_ALARM. Every time a software component wants to modify the status and severity, it first checks
the new severity and only makes a change if the severity it wants to set is greater than the current new severity. If it does
make a change, it changes the new status and new severity, not the current status and severity. When database monitors
are checked, which is normally done by a record processing routine, the current status and severity are set equal to
the new values and the new values reset to zero. The end result is that the current alarm status and severity reflect the
highest severity outstanding alarm. If multiple alarms of the same severity are present the alarm status reflects the first
one detected.

1.1. EPICS Process Database Concepts 9

EPICS Documentation Sandbox

Phase

The PHAS field is used to order the processing of records that are scanned at the same time, i.e., records that are
scanned periodically at the same interval and priority, or that are scanned on the same event. In this manner records
dependent upon other records can be assured of using current data.

To illustrate this we will look at an example from the previous section, with the records, however, being scanned
periodically instead of passively (Figure 6). In this example each of these records specifies .1 second; thus, the records
are synchronous. The phase sequence is used to assure that the analog input is processed first, meaning that it fetches
its value from the specified location and places it in the VAL field (after any conversions). Next, the calc record will
be processed, retrieving its value from the analog input and performing its calculation. Lastly, the analog output will
be processed, retrieving its desired output value from the calc record’s VAL field (the VAL field contains the result of
the calc record’s calculations) and writing that value to the location specified it its OUT link. In order for this to occur,
the PHAS field of the analog input record must specify 0, the PHAS field of the calculation record must specify 1, and
the analog output’s PHAS field must specify 2.

Figure 6

It is important to understand that in the above example, no record causes another to be processed. The phase mechanism
instead causes each to process in sequence.

PVAccess Links

When built against Base >= 3.16.1, support is enabled for PVAccess links, which are analogous to Channel Access
(CA) links. However, the syntax for PVA links is quite different.

The authoritative documentation is available in the git repository, pva2pva.

Note

The “dbjlr” and “dbpvar” IOC shell command provide information about PVA links in a running IOC.

A simple configuration using defaults is

record(longin, "tgt") {}
record(longin, "src") {
field(INP, {pva:"tgt"})

}

This is a shorthand for

record(longin, "tgt") {}
record(longin, "src") {

(continues on next page)

10 Chapter 1. EPICS Record Reference Manual

https://epics-base.github.io/pva2pva/qsrv_page.html#qsrv_link

EPICS Documentation Sandbox

(continued from previous page)

field(INP, {pva:{pv:"tgt"}})
}

Some additional keys (beyond “pv”) may be used. Defaults are shown in the example below:

record(longin, "tgt") {}
record(longin, "src") {
field(INP, {pva:{
pv:"tgt",
field:"", # may be a sub-field
local:false,# Require local PV
Q:4, # monitor queue depth
pipeline:false, # require that server uses monitor
flow control protocol
proc:none, # Request record processing
#(side-effects).
sevr:false, # Maximize severity.
time:false, # set record time during getValue
monorder:0, # Order of record processing as a result #of CP and CPP
retry:false,# allow Put while disconnected.
always:false,# CP/CPP input link process even when # .value field hasn't changed
defer:false # Defer put

}})
}

pv: Target PV name

The PV name to search for. This is the same name which could be used with ‘pvget’ or other client tools.

field: Structure field name

The name of a sub-field of the remotely provided Structure. By default, an empty string “” uses the top-level Structure.

If the top level structure, or a sub-structure is selected, then it is expeccted to conform to NTScalar, NTScalarArray, or
NTEnum to extract value and meta-data.

If the sub-field is an PVScalar or PVScalarArray, then a value will be taken from it, but not meta-data will be available.

local: Require local PV

When true, link will not connect unless the named PV is provided by the local (QSRV) data provider.

1.1. EPICS Process Database Concepts 11

EPICS Documentation Sandbox

Q: Monitor queue depth

Requests a certain monitor queue depth. The server may, or may not, take this into consideration when selecting a
queue depth.

pipeline: Monitor flow control

Expect that the server supports PVA monitor flow control. If not, then the subscription will stall (ick.)

proc: Request record processing (side-effects)

The meaning of this option depends on the direction of the link.

For output links, this option allows a request for remote processing (side-effects).

• none (default) - Make no special request. Uses a server specific default.

• false, “NPP” - Request to skip processing.

• true, “PP” - Request to force processing.

• “CP”, “CPP” - For output links, an alias for “PP”.

For input links, this option controls whether the record containing the PVA link will be processed when subscription
events are received.

• none (default), false, “NPP” - Do not process on subscription updates.

• true, “CP” - Always process on subscription updates.

• “PP”, “CPP” - Process on subscription updates if SCAN=Passive

sevr: Alarm propagation

This option controls whether reading a value from an input PVA link has the addition effect of propagating any alarm
via the Maximize Severity process.

• false - Do not maximize severity.

• true - Maximize alarm severity

• “MSI” - Maximize only if the remote severity is INVALID.

time: Time propagation

Somewhat analogous to sevr: applied to timestamp. When true, the record TIME field is updated when the link value
is read.

Warning

TSEL must be set to -2 for time:true to have an effect.

12 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

monorder: Monitor processing order

When multiple record target the same target PV, and request processing on subscription updates. This option allows
the order of processing to be specified.

Record are processed in increasing order. monorder=-1 is processed before monorder=0. Both are processed before
monorder=1.

defer: Defer put

By default (defer=false) an output link will immediately start a PVA Put operation. defer=true will store the new value
in an internal cache, but not start a PVA Put.

This option, in combination with field: allows a single Put to contain updates to multiple sub-fields.

retry: Put while disconnected

Allow a Put operation to be queued while the link is disconnected. The Put will be executed when the link becomes
connected.

always: CP/CPP always process

By default (always:false) a subscription update will only cause a CP input link to scan if the structure field (cf. field:
option) is marked as changed. Set to true to override this, and always process the link.

Link semantics/behavior

This section attempts to answer some questions about how links behave in certain situations.

Links are evaluated in three basic contexts.

• dbPutLink()/dbScanFwdLink()

• dbGetLink() of non-CP link

• dbGetLink() during a scan resulting from a CP link.

An input link can bring in a Value as well as meta-data, alarm, time, and display/control info. For input links, the PVA
link engine attempts to always maintain consistency between Value, alarm, and time. However, consistency between
these, and the display/control info is only ensured during a CP scan.

1.1.4 Address Specification

Address parameters specify where an input record obtains input, where an output record obtains its desired output
values, and where an output record writes its output. They are used to identify links between records, and to specify
the location of hardware devices. The most common link fields are OUT, an output link, INP, an input link, and DOL
(desired output location), also an input link.

There are three basic types of address specifications, which can appear in these fields: hardware addresses, database
addresses, and constants.

Note: Not all links support all three types, though some do. However, this doesn’t hold true for algorithmic records,
which cannot specify hardware addresses. Algorithm records are records like the Calculation, PID, and Select records.
These records are used to process values retrieved from other records. Consult the documentation for each record.

1.1. EPICS Process Database Concepts 13

EPICS Documentation Sandbox

Hardware Addresses

The interface between EPICS process database logic and hardware drivers is indicated in two fields of records that
support hardware interfaces: DTYP and INP/OUT. The DTYP field is the name of the device support entry table that
is used to interface to the device. The address specification is dictated by the device support. Some conventions exist
for several buses that are listed below. Lately, more devices have just opted to use a string that is then parsed by the
device support as desired. This specification type is called INST I/O. The other conventions listed here include: VME,
Allen-Bradley, CAMAC, GPIB, BITBUS, VXI, and RF. The input specification for each of these is different. The
specification of these strings must be acquired from the device support code or document.

INST

The INST I/O specification is a string that is parsed by the device support. The format of this string is determined by
the device support.

@parm

For INST I/O

• @ precedes optional string parm

VME Bus

The VME address specification format differs between the various devices. In all of these specifications the ‘#’ character
designates a hardware address. The three formats are:

#Cx Sy @parm

For analog in, analog out, and timer

• C precedes the card number x

• S precedes the signal number y

• @ precedes optional string parm

The card number in the VME addresses refers to the logical card number. Card numbers are assigned by address
convention; their position in the backplane is of no consequence. The addresses are assigned by the technician who
populates the backplane, with the logical numbers welldocumented. The logical card numbers start with 0 as do the
signal numbers. parm refers to an arbitrary string of up to 31 characters and is device specific.

Allen-Bradley Bus

The Allen-Bradley address specification is a bit more complicated as it has several more fields. The ‘#’ designates a
hardware address. The format is:

#La Ab Cc Sd @parm’

All record types

• L precedes the serial link number a and is optional - default 0

• A precedes the adapter number b and is optional - default 0

• C precedes the card number c

• S precedes the signal number d

• @ precedes optional string parm

14 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

The card number for Allen-Bradley I/O refers to the physical slot number, where 0 is the slot directly to the right of
the adapter card. The AllenBradley I/O has 12 slots available for I/O cards numbered 0 through 11. Allen-Bradley I/O
may use double slot addresses which means that slots 0,2,4,6,8, and 10 are used for input modules and slots 1,3,5,7,9
and 11 are used for output modules. It’s required to use the double slot addressing mode when the 1771IL card is used
as it only works in double slot addressing mode. This card is required as it provides Kilovolt isolation.

Camac Bus

The CAMAC address specification is similar to the Allen-Bradley address specification. The ‘#’ signifies a hardware
address. The format is:

#Ba Cb Nc Ad Fe @parm

For waveform digitizers

• B precedes the branch number a C precedes the crate number b

• N precedes the station number c

• A precedes the subaddress d (optional)

• F precedes the function e (optional)

• @ precedes optional string parm

The waveform digitizer supported is only one channel per card; no channel was necessary.

Others

The GPIB, BITBUS, RF, and VXI card-types have been added to the supported I/O cards. A brief description of the
address format for each follows. For a further explanation, see the specific documentation on each card.

#La Ab @parm
For GPIB I/O

• L precedes the link number a

• A precedes the GPIB address b

• @ precedes optional string parm

#La Nb Pc Sd @parm

For BITBUS I/O

• L precedes the link a, i.e., the VME bitbus interface

• N precedes the bitbus node b

• P precedes the port on node c

• S precedes the signal on port d

• @ precedes optional string parm

#Va Cb Sc @parm

For VXI I/O, dynamic addressing

• V precedes the VXI frame number a

• C precedes the slot within VXI frame b

• S precedes the signal number c

1.1. EPICS Process Database Concepts 15

EPICS Documentation Sandbox

• @ precedes optional string parm

#Va Sb @parm

For VXI I/O, static addressing

• V precedes the logical address a

• S precedes the signal number b

• @ precedes optional string parm

Database Addresses

Database addresses are used to specify input links, desired output links, output links, and forward processing links.
The format in each case is the same:

<RecordName>.<FieldName>

where RecordName is simply the name of the record being referenced, ‘.’ is the separator between the record name
and the field name, and FieldName is the name of the field within the record.

The record name and field name specification are case sensitive. The record name can be a mix of the following: a-z
A-Z 0-9 _ - : . [] < > ;. The field name is always upper case. If no field name is specified as part of an address, the
value field (VAL) of the record is assumed. Forward processing links do not need to include the field name because
no value is returned when a forward processing link is used; therefore, a forward processing link need only specify a
record name.

Basic typecast conversions are made automatically when a value is retrieved from another record–integers are converted
to floating point numbers and floating point numbers are converted to integers. For example, a calculation record which
uses the value field of a binary input will get a floating point 1 or 0 to use in the calculation, because a calculation record’s
value fields are floating point numbers. If the value of the calculation record is used as the desired output of a multi-bit
binary output, the floating point result is converted to an integer, because multi-bit binary outputs use integers.

Records that use soft device support routines or have no hardware device support routines are called soft records. See
the chapter on each record for information about that record’s device support.

Constants

Input link fields and desired output location fields can specify a constant instead of a hardware or database address. A
constant, which is not really an address, can be an integer value in whatever format (hex, decimal, etc.) or a floating-
point value. The value field is initialized to the constant when the database is initialized, and at run-time the value field
can be changed by a database access routine. For instance, a constant may be used in an input link of a calculation record.
For non-constant links, the calc record retrieves the values from the input links, and places them in a corresponding
value field. For constant links, the value fields are initialized with the constant, and the values can be changed by
modifying the value field, not the link field. Thus, because the calc record uses its value fields as the operands of its
expression, the constant becomes part of the calculation.

When nothing is specified in a link field, it is a NULL link. Before Release 3.13, the value fields associated with the
NULL link were initialized with the value of zero. From Release 3.13 onwards, the value fields associated with the
links are not initialized.

A constant may also be used in the desired output location or DOL field of an output record. In such a case, the initial
desired output value (VAL) will be that constant. Any specified conversions are performed on the value before it is
written as long as the device support module supports conversions (the Soft Channel device support routine does not
perform conversions). The desired output value can be changed by an operator at run-time by writing to the value field.

A constant can be used in an output link field, but no output will be written if this is the case. Be aware that this is not
considered an error by the database checking utilities.

16 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

1.1.5 Conversion Specification

Conversion parameters are used to convert transducer data into meaningful data. Discrete signals require converting
between levels and states (i.e., on, off, high, low, etc.). Analog conversions require converting between levels and engi-
neering units (i.e., pressure, temperature, level, etc.). These conversions are made to provide operators and application
codes with values in meaningful units.

The following sections discuss these types of conversions. The actual field names appear in capital letters.

Discrete Conversions

The most simple type of discrete conversion would be the case of a discrete input that indicates the on/off state of a
device. If the level is high it indicates that the state of the device is on. Conversely, if the level is low it indicates that the
device is off. In the database, parameters are available to enter strings which correspond to each level, which, in turn,
correspond to a state (0,1). By defining these strings, the operator is not required to know that a specific transducer is
on when the level of its transmitter is high or off when the level is low. In a typical example, the conversion parameters
for a discrete input would be entered as follows:

Zero Name (ZNAM): Off
One Name (ONAM): On

The equivalent discrete output example would be an on/off controller. Let’s consider a case where the safe state of a
device is On, the zero state. The level being low drives the device on, so that a broken cable will drive the device to a
safe state. In this example the database parameters are entered as follows:

Zero Name (ZNAM): On
One Name (ONAM): Off

By giving the outside world the device state, the information is clear. Binary inputs and binary outputs are used to
represent such on/off devices.

A more complex example involving discrete values is a multi-bit binary output record. Consider a two state valve which
has four states-Traveling, full open, full closed, and disconnected. The bit pattern for each control state is entered into
the database with the string that describes that state. The database parameters for the monitor would be entered as
follows:

Number of Bits (NOBT): 2
First Input Bit Spec (INP): Address of the least significant bit
Zero Value (ZRVL): 0
One Value (ONVL): 1
Two Value (TWVL): 2
Three Value (THVL): 3
Zero String (ZRST): Traveling
One String (ONST): Open
Two String (TWST): Closed
Three String (THST): Disconnected

1.1. EPICS Process Database Concepts 17

EPICS Documentation Sandbox

In this case, when the database record is scanned, the monitor bits are read and compared with the bit patterns for each
state. When the bit pattern is found, the device is set to that state. For instance, if the two monitor bits read equal 10
(binary), the Two value is the corresponding value, and the device would be set to state 2 which indicates that the valve
is Closed.

If the bit pattern is not found, the device is in an unknown state. In this example all possible states are defined.

In addition, the DOL fields of binary output records (bo and mbbo) will accept values in strings. When they retrieve
the string or when the value field is given a string via put_enum_strs, a match is sought with one of the states. If a
match is found, the value for that state is written.

Analog Conversions

Analog conversions require knowledge of the transducer, the filters, and the I/O cards. Together they measure the pro-
cess, transmit the data, and interface the data to the IOC. Smoothing is available to filter noisy signals. The smoothing
argument is a constant between 0 and 1 and is specified in the SMOO field. It is applied to the converted hardware
signal as follows:

eng units = (new eng units × (1 - smoothing)) + (old eng units × smoothing)

The analog conversions from raw values to engineering units can be either linear or breakpoint conversions.

Whether an analog record performs linear conversions, breakpoint conversions, or no conversions at all depends on
how the record’s LINR field is configured. The possible choices for the LINR field are as follows:

• LINEAR

• SLOPE

• NO CONVERSION

• typeKdegF

• typeKdegC

• typeJdegF

• typeJdegC

If either LINEAR or SLOPE is chosen, the record performs a linear conversion on the data. If NO CONVERSION is
chosen, the record performs no conversion on its data. The other choices are the names of breakpoint tables. When
one of these is specified in the LINR field, the record uses the specified table to convert its data. (Note that additional
breakpoint tables are often added at specific sites, so more breakpoint tables than are listed here may be available at the
user’s site.) The following sections explain linear and breakpoint conversions.

Linear Conversions

The engineering units full scale and low scale are specified in the EGUF and EGUL fields, respectively. The values of
the EGUF and EGUL fields correspond to the maximum and minimum values of the transducer, respectively. Thus,
the value of these fields is device dependent. For example, if the transducer has a range of -10 to +10 volts, then the
EGUF field should be 10 and the EGUL field should be -10. In all cases, the EGU field is a string that contains the text
to indicate the units of the value.

The distinction between the LINEAR and SLOPE settings for the LINR field are in how the conversion parameters are
calculated:

With LINEAR conversion the user must set EGUL and EGUF to the lowest and highest possible engineering units
values respectively that can be converted by the hardware. The device support knows the range of the raw data and
calculates ESLO and EOFF from them.

18 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

SLOPE conversion requires the user to calculate the appropriate scaling and offset factors and put them directly in
ESLO and EOFF.

There are three formulas to know when considering the linear conversion parameters. The conversion from measured
value to engineering units is as follows:

engunits = eng units low +
measured A/D counts
full scale A/D counts

* (eng units full scale - eng units low)

In the following examples the determination of engineering units full scale and low scale is shown. The conversion
to engineering units is also shown to familiarize the reader with the signal conversions from signal source to database
engineering units.

Transducer Matches the I/O module

First let us consider a linear conversion. In this example, the transducer transmits 0-10 Volts, there is no amplification,
and the I/O card uses a 0-10 Volt interface.

The transducer transmits pressure: 0 PSI at 0 Volts and 175 PSI at 10 Volts. The engineering units full scale and low
scale are determined as follows:

eng. units full scale = 17.5 × 10.0
eng. units low scale = 17.5 × 0.0

The field entries in an analog input record to convert this pressure will be as follows:

LINR: Linear
EGUF: 175.0
EGUL: 0
EGU: PSI

The conversion will also take into account the precision of the I/O module. In this example (assuming a 12 bit analog
input card) the conversion is as follows:

eng units = 0 +
measured A/D counts

4095
* (175− 0)

When the pressure is 175 PSI, 10 Volts is sent to the I/O module. At 10 Volts the signal is read as 4095. When this is
plugged into the conversion, the value is 175 PSI.

1.1. EPICS Process Database Concepts 19

EPICS Documentation Sandbox

Transducer Lower than the I/O module

Let’s consider a variation of this linear conversion where the transducer is 0-5 Volts.

In this example the transducer is producing 0 Volts at 0 PSI and 5 Volts at 175 PSI. The engineering units full scale
and low scale are determined as follows:

eng. units low scale = 35 × 10 eng. units full scale = 35 × 0

The field entries in an analog record to convert this pressure will be as follows:

LINR: Linear
EGUF: 350
EGUL: 0
EGU: PSI

The conversion will also take into account the precision of the I/O module. In this example (assuming a 12 bit analog
input card) the conversion is as follows:

eng units = 0 +
measured A/D counts

4095
* (350− 0)

Notice that at full scale the transducer will generate 5 Volts to represent 175 PSI. This is only half of what the input
card accepts; input is 2048.

Let’s plug in the numbers to see the result:

0 + (2048/4095) * (350− 0) = 175

In this example we had to adjust the engineering units full scale to compensate for the difference between the transmitter
and the analog input card.

Transducer Positive and I/O module bipolar

Let’s consider another variation of this linear conversion where the input card accepts -10 Volts to 10 Volts (i.e. Bipolar
instead of Unipolar).

In this example the transducer is producing 0 Volts at 0 PSI and 10 Volts at 175 PSI. The input module has a different
range of voltages and the engineering units full scale and low scale are determined as follows:

eng. units full scale = 17.5 × 10 eng. units low scale = 17.5 × (-10)

The database entries to convert this pressure will be as follows:

20 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

LINR: Linear
EGUF: 175
EGUL: -175
EGU: PSI

The conversion will also take into account the precision of the I/O module. In this example (assuming a 12 bit analog
input card) the conversion is as follows:

eng units = −175 +
measured A/D counts

4095
* (175− (−175))

Notice that at low scale the transducer will generate 0 Volts to represent 0 PSI. Because this is half of what the input
card accepts, it is input as 2048. Let’s plug in the numbers to see the result:

−175 + (2048/4095) * (175− (−175)) = 0

In this example we had to adjust the engineering units low scale to compensate for the difference between the unipolar
transmitter and the bipolar analog input card.

Combining Linear Conversion with an Amplifier

Let’s consider another variation of this linear conversion where the input card accepts -10 Volts to 10 Volts, the trans-
ducer transmits 0 - 2 Volts for 0 - 175 PSI and a 2x amplifier is on the transmitter.

At 0 PSI the transducer transmits 0 Volts. This is amplified to 0 Volts. At half scale, it is read as 2048. At 175 PSI, full
scale, the transducer transmits 2 Volts, which is amplified to 4 Volts. The analog input card sees 4 Volts as 70 percent
of range or 2867 counts. The engineering units full scale and low scale are determined as follows:

eng units full scale = 43.75 × 10
eng units low scale = 43.75 × (-10)

(175 / 4 = 43.75) The record’s field entries to convert this pressure will be as follows:

LINR Linear
EGUF 437.5
EGUL -437.5
EGU PSI

The conversion will also take into account the precision of the I/O module. In this example (assuming a 12 bit analog
input card) the conversion is as follows:

eng units = −437.5 +
measured A/D counts

4095
* (437.5− (−437.5))

1.1. EPICS Process Database Concepts 21

EPICS Documentation Sandbox

Notice that at low scale the transducer will generate 0 Volts to represent 0 PSI. Because this is half of what the input
card accepts, it is input as 2048. Let’s plug in the numbers to see the result:

−437.5 + (2048/4095) * (437.5− (−437.5)) = 0

Notice that at full scale the transducer will generate 2 volts which represents 175 PSI. The amplifier will change the 2
Volts to 4 Volts. 4 Volts is 14/20 or 70 percent of the I/O card’s scale. The input from the I/O card is therefore 2866
(i.e., 0.7 * 4095). Let’s plug in the numbers to see the result:

−437.5 + (2866/4095) * (437.5− (−437.5)) = 175𝑃𝑆𝐼

We had to adjust the engineering units full scale to adjust for the difference between the transducer with the amplifier
affects and the range of the I/O card. We also adjusted the low scale to compensate for the difference between the
unipolar transmitter/amplifier and the bipolar analog input card.

Breakpoint Conversions

Now let us consider a non-linear conversion. These are conversions that could be entered as polynomials. As these
are more time consuming to execute, a breakpoint table is created that breaks the non-linear conversion into linear
segments that are accurate enough.

Breakpoint Table

The breakpoint table is then used to do a piecewise linear conversion. Each piecewise segment of the breakpoint table
contains:

Raw Value Start for this segment, Engineering Units at the start.

breaktable(typeJdegC) {
0.000000 0.000000
365.023224 67.000000
1000.046448 178.000000
3007.255859 524.000000
3543.383789 613.000000
4042.988281 692.000000
4101.488281 701.000000

}

Breakpoint Conversion Example

When a new raw value is read, the conversion routine starts from the previously used line segment, compares the raw
value start, and either going forward or backward in the table searches the proper segment for this new raw value. Once
the proper segment is found, the new engineering units value is the engineering units value at the start of this segment
plus the slope of this segment times the position on this segment.

value = eng.units at segment start + (raw value - raw at segment start) * slope

A table that has an entry for each possible raw count is effectively a look up table.

Breakpoint tables are loaded to the IOC using the dbLoadDatabase shell function. The slope corresponding to each
segment is calculated when the table is loaded. For raw values that exceed the last point in the breakpoint table, the
slope of the last segment is used.

22 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

In this example the transducer is a thermocouple which transmits 0-20 milliAmps. An amplifier is present which
amplifies milliAmps to volts. The I/O card uses a 0-10 Volt interface and a 12-bit ADC. Raw value range would thus
be 0 to 4095.

The transducer is transmitting temperature. The database entries in the analog input record that are needed to convert
this temperature will be as follows:

LINR typeJdegC
EGUF 0
EGUL 0
EGU DGC

For analog records that use breakpoint tables, the EGUF and EGUL fields are not used in the conversion, so they do
not have to be given values.

With this example setup and assuming we get an ADC raw reading of 3500, the formula above would give:

Value = 524.0 + (3500 - 3007) * 0.166 = 605.838 DGC

EPICS Base distribution currently includes lookup tables for J and K thermocouples in degrees F and degrees C.

Other potential applications for a lookup table are e.g. other types of thermocouples, logarithmic output controllers,
and exponential transducers. The piece-wise linearization of the signals provides a mechanism for conversion that
minimizes the amount of floating point arithmetic required to convert non-linear signals. Additional breakpoint tables
can be added to the predefined ones.

Creating Breakpoint Tables

There are two ways to create a new breakpoint table:

1) Simply type in the data for each segment, giving the raw and corresponding engineering unit value for each point in
the following format.

breaktable(<tablename>) {
<first point> <first eng units>
<next point> <next eng units>
<etc.> <...>

}

where the <tablename> is the name of the table, such as typeKdegC, and <first point> is the raw value of the beginning
point for each line segment, and <first eng units> is the corresponding engineering unit value. The slope is calculated
by the software and should not be specified.

2) Create a file consisting of a table of an arbitrary number of values in engineering units and use the utility called
makeBpt to convert the table into a breakpoint table. As an example, the contents data file to create the typeJdegC
breakpoint table look like this:

1.1. EPICS Process Database Concepts 23

EPICS Documentation Sandbox

!header
"typeJdegC" 0 0 700 4095 .5 -210 760 1
!data
-8.096 -8.076 -8.057 <many more numbers>

The file name must have the extension .data. The file must first have a header specifying these nine things:

1. Name of breakpoint table in quotes: “typeJdegC”

2. Engineering units for 1st breakpoint table entry: 0

3. Raw value for 1st breakpoint table entry: 0

4. Highest value desired in engineering units: 700

5. Raw value corresponding to high value in engineering units: 4095

6. Allowed error in engineering units: .5

7. Engineering units corresponding to first entry in data table: -210

8. Engineering units corresponding to last entry in data table: 760

9. Change in engineering units between data table entries: 1

The rest of the file contains lines of equally spaced engineering values, with each line no more than 160 characters
before the new-line character. The header and the actual table should be specified by !header and !data, respectively.
The file for this data table is called typeJdegC.data, and can be converted to a breakpoint table with the makeBpt utility
as follows:

unix% makeBpt typeJdegC.data

1.1.6 Alarm Specification

There are two elements to an alarm condition: the alarm status and the severity of that alarm. Each database record
contains its current alarm status and the corresponding severity for that status. The scan task, which detects these
alarms, is also capable of generating a message for each change of alarm state. The types of alarms available fall into
these categories: scan alarms, read/write alarms, limit alarms, and state alarms. Some of these alarms are configured by
the user, and some are automatic which means that they are called by the record support routines on certain conditions,
and cannot be changed or configured by the user.

Alarm Severity

An alarm severity is used to give weight to the current alarm status. There are four severities:

• NO_ALARM

• MINOR

• MAJOR

• INVALID

NO_ALARM means no alarm has been triggered. An alarm state that needs attention but is not dangerous is a MINOR
alarm. In this instance the alarm state is meant to give a warning to the operator. A serious state is a MAJOR alarm.
In this instance the operator should give immediate attention to the situation and take corrective action. An INVALID
alarm means there’s a problem with the data, which can be any one of several problems; for instance, a bad address
specification, device communication failure, or signal is over range. In these cases, an alarm severity of INVALID is
set. An INVALID alarm can point to a simple configuration problem or a serious operational problem.

24 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

For limit alarms and state alarms, the severity can be configured by the user to be MAJOR or MINOR for the a specified
state. For instance, an analog record can be configured to trigger a MAJOR alarm when its value exceeds 175.0. In
addition to the MAJOR and MINOR severity, the user can choose the NO_ALARM severity, in which case no alarm
is generated for that state.

For the other alarm types (i.e., scan, read/write), the severity is always INVALID and not configurable by the user.

Alarm Status

Alarm status is a field common to all records. The field is defined as an enumerated field. The possible states are listed
below.

• NO_ALARM: This record is not in alarm

• READ: An INPUT link failed in the device support

• WRITE: An OUTPUT link failed in the device support

• HIHI: An analog value limit alarm

• HIGH: An analog value limit alarm

• LOLO: An analog value limit alarm

• LOW: An analog value limit alarm

• STATE: An digital value state alarm

• COS: An digital value change of state alarm

• COMM: A device support alarm that indicates the device is not communicating

• TIMEOUT: A device sup alarm that indicates the asynchronous device timed out

• HWLIMIT: A device sup alarm that indicates a hardware limit alarm

• CALC: A record support alarm for calculation records indicating a bad calculation

• SCAN: An invalid SCAN field is entered

• LINK: Soft device support for a link failed:no record, bad field, invalid conversion, INVALID alarm severity on
the referenced record.

• SOFT

• BAD_SUB

• UDF

• DISABLE

• SIMM

• READ_ACCESS

• WRITE_ACCESS

There are a number of issues with this field and menu.

• The maximum enumerated strings passed through channel access is 16 so nothing past SOFT is seen if the value
is not requested by Channel Access as a string.

• Only one state can be true at a time so that the root cause of a problem or multiple problems are masked. This
is particularly obvious in the interface between the record support and the device support. The hardware could
have some combination of problems and there is no way to see this through the interface provided.

• The list is not complete.

1.1. EPICS Process Database Concepts 25

EPICS Documentation Sandbox

• In short, the ability to see failures through the STAT field are limited. Most problems in the hardware, configu-
ration, or communication are reduced to READ or WRITE error and have their severity set to INVALID. When
you have an INVALID alarm severity, some investigation is currently needed to determine the fault. Most EPICS
drivers provide a report routine that dumps a large set of diagnostic information. This is a good place to start in
these cases.

Alarm Conditions Configured in the Database

When you have a valid value, there are fields in the record that allow the user to configure off normal conditions. For
analog values these are limit alarms. For discrete values, these are state alarms.

Limit Alarms

For analog records (this includes such records as the stepper motor record), there are configurable alarm limits. There
are two limits for above normal operating range and two limits for the below-limit operating range. Each of these limits
has an associated alarm severity, which is configured in the database. If the record’s value drops below the low limit
and an alarm severity of MAJOR was specified for that limit, then a MAJOR alarm is triggered. When the severity of
a limit is set to NO_ALARM, none will be generated, even if the limit entered has been violated.

There are two limits at each end, two low values and two high values, so that a warning can be set off before the value
goes into a dangerous condition.

Analog records also contain a hysteresis field, which is also used when determining limit violations. The hysteresis
field is the deadband around the alarm limits. The deadband keeps a signal that is hovering at the limit from generating
too many alarms. Let’s take an example (Figure 8) where the range is -100 to 100 volts, the high alarm limit is 30 Volts,
and the hysteresis is 10 Volts. If the value is normal and approaches the HIGH alarm limit, an alarm is generated when
the value reaches 30 Volts. This will only go to normal if the value drops below the limit by more than the hysteresis.
For instance, if the value changes from 30 to 28 this record will remain in HIGH alarm. Only when the value drops to
20 will this record return to normal state.

Figure 8

26 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

State Alarms

For discrete values there are configurable state alarms. In this case a user may configure a certain state to be an alarm
condition. Let’s consider a cooling fan whose discrete states are high, low, and off. The off state can be configured
to be an alarm condition so that whenever the fan is off the record is in a STATE alarm. The severity of this error is
configured for each state. In this example, the low state could be a STATE alarm of MINOR severity, and the off state
a STATE alarm of MAJOR severity.

Discrete records also have a field in which the user can specify the severity of an unknown state to NO_ALARM,
MINOR or MAJOR. Thus, the unknown state alarm is not automatic.

Discrete records also have a field, which can specify an alarm when the record’s state changes. Thus, an operator can
know when the record’s alarm state has changed. If this field specifies NO_ALARM, then a change of state will not
trigger a change of state alarm. However, if it specifies either MINOR or MAJOR, a change of state will trigger an
alarm with the corresponding severity.

Alarm Handling

A record handles alarms with the NSEV, NSTA, SEVR, and STAT fields. When a software component wants to raise
an alarm, it first checks the new alarm state fields: NSTA, new alarm state, and NSEV, new alarm severity. If the
severity in the NSEV field is higher than the severity in the current severity field (SEVR), then the software component
sets the NSTA and NSEV fields to the severity and alarm state that corresponds to the outstanding alarm. When the
record process routine next processes the record, it sets the current alarm state (STAT) and current severity

(SEVR) to the values in the NSEV and NSTA fields. This method of handling alarms ensures that the current severity
(STAT) reflects the

highest severity of outstanding alarm conditions instead of simply the last raised alarm. This also means that the if
multiple alarms of equal severity are present, the alarm status indicates the first one detected.

In addition, the get_alarm_double() routine can be called to format an alarm message and send it to an alarm handler.
The alarm conditions may be monitored by the operator interface by explicitly monitoring the STAT and SEVR fields.
All values monitored by the operator interface are returned from the database access with current status information.

1.1.7 Monitor Specification

EPICS provides the methods for clients to subscribe to be informed of changes in a PV; in EPICS vocabulary this
method is called “monitor”.

In Channel Access, as well as PVAccess clients connect to PVs to put, get, or monitor. There are fields in the EPICS
records that help limit the monitors posted to these clients through the CA or PVA Server. These fields most typically
apply when the client is monitoring the VAL field of a record. Most other fields post a monitor whenever they are
changed. For instance, a put to an alarm limit, causes a monitor to be posted to any client that is monitoring that field.
The client can select. . .

For more information about using monitors, see the Channel Access Reference Guide.

1.1. EPICS Process Database Concepts 27

EPICS Documentation Sandbox

Rate Limits

The inherent rate limit is the rate at which the record is scanned. Monitors are only posted when the record is processed
as a minimum. There are currently no mechanisms for the client to rate limit a monitor. If a record is being processed
at a much higher rate than an application wants, either the database developer can make a second record at a lower rate
and have the client connect to that version of the record or the client can disregard the monitors until the time stamp
reflects the change.

Channel Access Deadband Selection

The Channel Access client can set a mask to indicate which alarm change it wants to monitor. There are three: value
change, archive change, and alarm change.

Value Change Monitors

The value change monitors are typically sent whenever a field in the database changes. The VAL field is the exception.
If the MDEL field is set, then the VAL field is sent when a monitor is set, and then only sent again, when the VAL field
has changed by MDEL. Note that a MDEL of 0 sends a monitor whenever the VAL fields changes and an MDEL of
-1 sends a monitor whenever the record is processed as the MDEL is applied to the absolute value of the difference
between the previous scan and the current scan. An MDEL of -1 is useful for scalars that are triggered and a positive
indication that the trigger occurred is required.

Archive Change Monitors

The archive change monitors are typically sent whenever a field in the database changes. The VAL field is the exception.
If the ADEL field is set, then the VAL field is sent when a monitor is set, and then only sent again, when the VAL field
has changed by ADEL.

Alarm Change Monitors

The alarm change monitors are only sent when the alarm severity or status change. As there are filters on the alarm
condition checking, the change of alarm status or severity is already filtered through those mechanisms. These are
described in Alarm Specification.

Metadata Changes

When a Channel Access Client connects to a field, it typically requests some metadata related to that field. One case
is a connection from an operator interface typically requests metadata that includes: display limits, control limits, and
display information such as precision and engineering units. If any of the fields in a record that are included in this
metadata change after the connection is made, the client is not informed and therefore this is not reflected unless the
client disconnects and reconnects. A new flag is being added to the Channel Access Client to support posting a monitor
to the client whenever any of this metadata changes. Clients can then request the metadata and reflect the change.

Stay tuned for this improvement in the record support and channel access clients.

28 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Client specific Filtering

Several situation have come up that would be useful. These include event filtering, rate guarantee, rate limit, and value
change.

Event Filtering

There are several cases where a monitor was sent from a channel only when a specific event was true. For instance,
there are diagnostics that are read at 1 kHz. A control program may only want this information when the machine is
producing a particular beam such as a linac that has several injectors and beam lines. These are virtual machines that
want to be notified when the machine is in their mode. These modes can be interleaved at 60 Hz in some cases. A fault
analysis tool may only be interested in all of this data when a fault occurs and the beam is dumped.

There are two efforts here: one at LANL and one from ANL/BNL. These should be discussed in the near future.

Rate Guarantee

Some clients may want to receive a monitor at a given rate. Binary inputs that only notify on change of state may not
post a monitor for a very long time. Some clients may prefer to have a notification at some rate even when the value is
not changing.

Rate Limit

There is a limit to the rate that most clients care to be notified. Currently, only the SCAN period limits this. A user-
imposed limit is needed in some cases such as a data archiver that would only want this channel at 1 Hz (all channels
on the same 1 msec in this case).

Value Change

Different clients may have a need to set different deadbands among them. No specific case is cited.

1.1.8 Control Specification

A control loop is a set of database records used to maintain control autonomously. Each output record has two fields
that are help implement this independent control: the desired output location field (DOL) and the output mode select
field (OMSL). The OMSL field has two mode choices: closed_loop or supervisory. When the closed loop mode is
chosen, the desired output is retrieved from the location specified by the DOL field and placed into the VAL field.
When the supervisory mode is chosen, the desired output value is the VAL field. In supervisory mode the DOL link is
not retrieved. In the supervisory mode, VAL is set typically by the operator through a Channel Access “Put”.

1.1. EPICS Process Database Concepts 29

EPICS Documentation Sandbox

Closing an Analog Control Loop

In a simple control loop an analog input record reads the value of a process variable or PV. The operator sets the Setpoint
in the PID record. Then, a PID record retrieves the value from the analog input record and computes the error - the
difference between the readback and the setpoint. The PID record computes the new output setting to move the process
variable toward the setpoint. The analog output record gets the value from the PID through the DOL when the OMSL
is closed_loop. It sets the new output and on the next period repeats this process.

Configuring an Interlock

When certain conditions become true in the process, it may trip an interlock. The result of this interlock is to move
something into a safe state or to mitigate damage by taking some action. One example is the closing of a vacuum valve
to isolate a vacuum loss. When a vacuum reading in one region of a machine is not at the operating range, an interlock
is used to either close a valve and prohibit it from being open. This can be implemented by reading several vacuum
gauges in an area into a calculation record. The expression in the calculation record can express the condition that
permits the valve to open. The result of the expression is then referenced to the DOL field of a binary output record
that controls the valve. If the binary output has the OMSL field set to closed_loop it sets the valve to the value of the
calculation record. If it is set to supervisory, the operator can override the interlock and control the valve directly.

1.2 Fields Common to All Record Types

This section contains a description of the fields that are common to all record types. These fields are defined in db-
Common.dbd.

See also Fields Common to Input Record Types and Fields Common to Output Record Types.

1.2.1 Operator Display Parameters

The NAME field contains the record name which must be unique within an EPICS Channel Access name space. The
name is supplied by the application developer and is the means of identifying a specific record. The name has a
maximum length of 60 characters and should use only this limited set of characters:

a-z A-Z 0-9 _ - : [] < > ;

The DESC field may be set to provide a meaningful description of the record’s purpose. Maximum length is 40
characters.

Field Summary Type DCT Default Read Write CA PP
NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

30 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

1.2.2 Scan Fields

These fields contain information related to how and when a record processes. A few records have unique fields that
also affect how they process. These fields, if any, will be listed and explained in the section for each record.

The SCAN field specifies the scanning period for periodic record scans or the scan type for non-periodic record scans.
The default set of values for SCAN can be found in menuScan.dbd.

The choices provided by this menu are:

• Passive for the record scan to be triggered by other records or Channel Access

• Event for event-driven scan

• I/O Intr for interrupt-driven scan

• A set of periodic scan intervals

Additional periodic scan rates may be defined for individual IOCs by making a local copy of menuScan.dbd and
adding more choices as required. Periodic scan rates should normally be defined in order following the other scan
types, with the longest periods appearing first. Scan periods can be specified with a unit string of second/seconds,
minute/minutes, hour/hours or Hertz/Hz. Seconds are used if no unit is included in the choice string. For example
these rates are all valid:

1 hour
0.5 hours
15 minutes
3 seconds
1 second
2 Hertz

The PINI field specifies record processing at initialization. If it is set to YES during database configuration, the record
is processed once at IOC initialization (before the normal scan tasks are started).

The PHAS field orders the records within a specific SCAN group. This is not meaningful for passive records. All
records of a specified phase are processed before those with higher phase number. It is generally better practice to use
linked passive records to enforce the order of processing rather than a phase number.

The EVNT field specifies an event number. This event number is used if the SCAN field is set to Event. All records
with scan type Event and the same EVNT value will be processed when a call to post_event for EVNT is made. The
call to post_event is: post_event(short event_number).

The PRIO field specifies the scheduling priority for processing records with SCAN=I/O Event and asynchronous
record completion tasks.

The DISV field specifies a “disable value”. Record processing cannot begin when the value of this field is equal to the
value of the DISA field, meaning the record is disabled. Note that field values of a record can be changed by database
or Channel Access puts, even if the record is disabled.

The DISA field contains the value that is compared with DISV to determine if the record is disabled. A value is obtained
for the DISA field from the SDIS link field before the IOC tries to process the record. If SDIS is not set, DISA may be
set by some other method to enable and disable the record.

The DISS field defines the record’s “disable severity”. If this field is not NO_ALARM and the record is disabled, the
record will be put into alarm with this severity and a status of DISABLE_ALARM.

If the PROC field of a record is written to, the record is processed.

The LSET field contains the lock set to which this record belongs. All records linked in any way via input, output, or
forward database links belong to the same lock set. Lock sets are determined at IOC initialization time, and are updated
whenever a database link is added, removed or altered.

1.2. Fields Common to All Record Types 31

EPICS Documentation Sandbox

The LCNT field counts the number of times dbProcess finds the record active during successive scans, i.e. PACT is
TRUE. If dbProcess finds the record active MAX_LOCK times (currently set to 10) it raises a SCAN_ALARM.

The PACT field is TRUE while the record is active (being processed). For asynchronous records PACT can be TRUE
from the time record processing is started until the asynchronous completion occurs. As long as PACT is TRUE,
dbProcess will not call the record processing routine. See Application Developers Guide for details on usage of PACT.

The FLNK field is a link pointing to another record (the “target” record). Processing a record with the FLNK field set
will trigger processing of the target record towards the end of processing the first record (but before PACT is cleared),
provided the target record’s SCAN field is set to Passive. If the FLNK field is a Channel Access link it must point to
the PROC field of the target record.

The SPVT field is for internal use by the scanning system.

Field Summary Type DCT Default Read Write CA PP
SCAN Scan Mechanism MENU menuScan Yes Yes Yes No

PINI Process at iocInit MENU menuPini Yes Yes Yes No

PHAS Scan Phase SHORT Yes Yes Yes No

EVNT Event Name STRING [40] Yes Yes Yes No

PRIO Scheduling Priority MENU menuPriority Yes Yes Yes No

DISV Disable Value SHORT Yes 1 Yes Yes No
DISA Disable SHORT No Yes Yes No

SDIS Scanning Disable INLINK Yes Yes Yes No

PROC Force Processing UCHAR No Yes Yes Yes

DISS Disable Alarm Sevrty MENU menuAlarmSevr Yes Yes Yes No

LCNT Lock Count UCHAR No Yes No No

PACT Record active UCHAR No Yes No No

FLNK Forward Process Link FWDLINK Yes Yes Yes No

SPVT Scan Private NOACCESS No No No No

1.2.3 Alarm Fields

Alarm fields indicate the status and severity of record alarms, or determine how and when alarms are triggered. Of
course, many records have alarm-related fields not common to all records. Those fields are listed and explained in the
appropriate section on each record.

The STAT field contains the current alarm status.

The SEVR field contains the current alarm severity.

The AMSG string field may contain more detailed information about the alarm.

32 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

The STAT, SEVR and AMSG fields hold alarm information as seen outside of the database. The NSTA, NSEV and
NAMSG fields are used during record processing by the database access, record support, and device support routines
to set new alarm status and severity values and message text. Whenever any software component discovers an alarm
condition, it calls one of these routines to register the alarm:

recGblSetSevr(precord, new_status, new_severity);
recGblSetSevrMsg(precord, new_status, new_severity, "Message", ...);

These check the current alarm severity and update the NSTA, NSEV and NAMSG fields if appropriate so they always
relate to the highest severity alarm seen so far during record processing. The file alarm.h defines the allowed alarm
status and severity values. Towards the end of record processing these fields are copied into the STAT, SEVR and
AMSG fields and alarm monitors triggered.

The ACKS field contains the highest unacknowledged alarm severity.

The ACKT field specifies whether it is necessary to acknowledge transient alarms.

The UDF indicates if the record’s value is UnDeFined. Typically this is caused by a failure in device support, the fact
that the record has never been processed, or that the VAL field currently contains a NaN (not a number) or Inf (Infinite)
value. UDF defaults to TRUE but can be set in a database file. Record and device support routines which write to the
VAL field are generally responsible for setting and clearing UDF.

Field Summary Type DCT Default Read Write CA PP
STAT Alarm Status MENU menuAlarmStat No UDF Yes No No
SEVR Alarm Severity MENU menuAlarmSevr No Yes No No

AMSG Alarm Message STRING [40] No Yes No No

NSTA New Alarm Status MENU menuAlarmStat No Yes No No

NSEV New Alarm Severity MENU menuAlarmSevr No Yes No No

NAMSG New Alarm Message STRING [40] No Yes No No

ACKS Alarm Ack Severity MENU menuAlarmSevr No Yes No No

ACKT Alarm Ack Transient MENU menuYesNo Yes YES Yes No No
UDF Undefined UCHAR Yes 1 Yes Yes Yes

1.2.4 Device Fields

The RSET field contains the address of the Record Support Entry Table. See the Application Developers Guide for
details on usage.

The DSET field contains the address of Device Support Entry Table. The value of this field is determined at IOC
initialization time. Record support routines use this field to locate their device support routines.

The DPVT field is is for private use of the device support modules.

1.2. Fields Common to All Record Types 33

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
RSET Address of RSET NOACCESS No No No No

DSET DSET address NOACCESS No No No No

DPVT Device Private NOACCESS No No No No

1.2.5 Debugging Fields

The TPRO field can be used to trace record processing. When this field is non-zero and the record is processed, a trace
message will be be printed for this record and any other record in the same lock-set that is triggered by a database link
from this record. The trace message includes the name of the thread doing the processing, and the name of the record
being processed.

The BKPT field indicates if there is a breakpoint set at this record. This supports setting a debug breakpoint in the
record processing. STEP through database processing can be supported using this.

Field Summary Type DCT Default Read Write CA PP
TPRO Trace Processing UCHAR No Yes Yes No

BKPT Break Point NOACCESS No No No No

1.2.6 Miscellaneous Fields

The ASG string field sets the name of the access security group used for this record. If left empty, the record is placed
in group DEFAULT.

The ASP field is private for use by the access security system.

The DISP field can be set to a non-zero value to reject puts from outside of the IOC (i.e. via Channel Access or PV
Access) to any field of the record other than to the DISP field itself. Field changes and record processing can still be
instigated from inside the IOC using DB links and the IOC scan mechanisms.

The DTYP field specifies the device type for the record. Most record types have their own set of device types which
are specified in the IOC’s database definition file. If a record type does not call any device support routines, the DTYP
and DSET fields are not used.

The MLOK field contains a mutex which is locked by the monitor routines in dbEvent.c whenever the monitor list for
this record is accessed.

The MLIS field holds a linked list of client monitors connected to this record. Each record support module is respon-
sible for triggering monitors for any fields that change as a result of record processing.

The PPN field contains the address of a putNotify callback.

The PPNR field contains the next record for PutNotify.

The PUTF field is set to TRUE if dbPutField caused the current record processing.

The RDES field contains the address of dbRecordType

The RPRO field specifies a reprocessing of the record when current processing completes.

The TIME field holds the time stamp when this record was last processed.

34 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

The UTAG field can be used to hold a site-specific 64-bit User Tag value that is associated with the record’s time stamp.

The TSE field value indicates the mechanism to use to get the time stamp:

• 0— Get the current time as normal

• -1— Ask the time stamp driver for its best source of the current time, if available.

• -2— Device support sets the time stamp and the optional User Tag from the hardware.

• Positive values (normally between 1-255) get the time of the last occurance of the numbered generalTime event.

The TSEL field contains an input link for obtaining the time stamp. If this link points to the TIME field of a record
then the time stamp and User Tag of that record are copied directly into this record (Channel Access links can only
copy the time stamp, not the User Tag). If the link points to any other field, that field’s value is read and stored in the
TSE field which is then used to provide the time stamp as described above.

Field Summary Type DCT Default Read Write CA PP
ASG Access Security Group STRING [29] Yes Yes Yes No

ASP Access Security Pvt NOACCESS No No No No

DISP Disable putField UCHAR Yes Yes Yes No

DTYP Device Type DEVICE Yes Yes Yes No

MLOK Monitor lock NOACCESS No No No No

MLIS Monitor List NOACCESS No No No No

PPN pprocessNotify NOACCESS No No No No

PPNR pprocessNotifyRecord NOACCESS No No No No

PUTF dbPutField process UCHAR No Yes No No

RDES Address of dbRecordType NOACCESS No No No No

RPRO Reprocess UCHAR No Yes No No

TIME Time NOACCESS No No No No

UTAG Time Tag UINT64 No Yes No No

TSE Time Stamp Event SHORT Yes Yes Yes No

TSEL Time Stamp Link INLINK Yes Yes Yes No

1.2. Fields Common to All Record Types 35

EPICS Documentation Sandbox

1.3 Fields Common to Input Record Types

This section describes fields that are found in many input record types. These fields usually have the same meaning
whenever they are used.

See also Fields Common to All Record Types and Fields Common to Output Record Types.

1.3.1 Input and Value Fields

The INP field specifies an input link. It is used by the device support routines to obtain input. For soft analog records
it can be a constant, a database link, or a channel access link.

The DTYP field specifies the name of the device support module that will input values. Each record type has its own
set of device support routines. If a record type does not have any associated device support, DTYP is meaningless.

The RVAL field contains - whenever possible - the raw data value exactly as it is obtained from the hardware or from
the associated device driver and before it undergoes any conversions. The Soft Channel device support module reads
values directly into VAL, bypassing this field.

The VAL field contains the record’s final value, after any needed conversions have been performed.

1.3.2 Device Input

A device input routine normally returns one of the following values to its associated record support routine:

• 0: Success and convert. The input value is in RVAL. The record support module will compute VAL from RVAL.

• 2: Success, but don’t convert. The device support module can specify this value if it does not want any conver-
sions. It might do this for two reasons:

– A hardware error is detected (in this case, it should also raise an alarm condition).

– The device support routine reads values directly into the VAL field and then sets UDF to FALSE. For some
record types the device support routine may have to do other record-specific processing as well such as
applying a smoothing filter to the engineering units value.

1.3.3 Device Support for Soft Records

In most cases, two soft output device support modules are provided: Soft Channel and Raw Soft Channel. Both allow
INP to be a constant, a database link, or a channel access link. The Soft Channel device support module reads input
directly into the VAL field and specifies that no value conversion should be performed. This allows the record to store
values in the data type of its VAL field. Note that for Soft Channel input, the RVAL field is not used. The Raw Soft
Channel support module reads input into RVAL and indicates that any specified unit conversions be performed.

The device support read routine normally calls dbGetLink() which fetches a value from the link.

If a value was returned by the link the UDF field is set to FALSE. The device support read routine normally returns the
status from dbGetLink().

36 Chapter 1. EPICS Record Reference Manual

https://metacpan.org/pod/dbCommonRecord
https://metacpan.org/pod/dbCommonOutput

EPICS Documentation Sandbox

1.3.4 Input Simulation Fields

The SIMM field controls simulation mode. By setting this field to YES or RAW, the record can be switched into
simulation mode of operation. While in simulation mode, input will be obtained from SIOL instead of INP.

The SIML field specifies the simulation mode location. This field can be a constant, a database link, or a channel
access link. If SIML is a database or channel access link, then SIMM is read from SIML. If SIML is a constant link
then SIMM is initialized with the constant value, but can be changed via database or channel access puts.

The SVAL field contains the simulation value. This is the record’s input value, in engineering units, when the record
is switched into simulation mode, i.e., SIMM is set to YES or RAW. If the record type supports conversion, setting
SIMM to RAW causes SVAL to be written to RVAL and the conversion to be done.

The SIOL field is a link that can be used to fetch the simulation value. The link can be a constant, a database link, or a
channel access link. If SIOL is a database or channel access link, then SVAL is read from SIOL. If SIOL is a constant
link then SVAL is initialized with the constant value but can be changed via database or channel access puts.

The SIMS field specifies the simulation mode alarm severity. When this field is set to a value other than NO_ALARM
and the record is in simulation mode, it will be put into alarm with this severity and a status of SIMM_ALARM.

The SDLY field specifies a delay (in seconds) to implement asynchronous processing in simulation mode. A positive
SDLY value will be used as delay between the first and second phase of processing in simulation mode. A negative
value (default) specifies synchronous processing.

The SSCN field specifies the SCAN mechanism to be used in simulation mode. This is specifically useful for ‘I/O Intr’
scanned records, which would otherwise never be scanned in simulation mode.

1.3.5 Simulation Mode for Input Records

An input record can be switched into simulation mode of operation by setting the value of SIMM to YES or RAW.
During simulation, the record will be put into alarm with a severity of SIMS and a status of SIMM_ALARM.

-- (SIMM = NO?)
/ (if supported and directed by device support,
/ INP -> RVAL -- convert -> VAL),

(else INP -> VAL)
SIML -> SIMM

\
-- (SIMM = YES?) SIOL -> SVAL -> VAL
\
-- (SIMM = RAW?) SIOL -> SVAL -> RVAL -- convert -> VAL

If SIMM is set to YES, the input value, in engineering units, will be obtained from SIOL instead of INP and directly
written to the VAL field. If SIMM is set to RAW, the value read through SIOL will be truncated and written to the
RVAL field, followed by the regular raw value conversion. While the record is in simulation mode, there will be no
calls to device support when the record is processed.

If SIOL contains a link, a TSE setting of “time from device” (-2) is honored in simulation mode by taking the time
stamp from the record that SIOL points to.

Normally input records contain a private readValue() routine which performs the following steps:

• If PACT is TRUE, the device support read routine is called, status is set to its return code, and readValue returns.

• Call dbGetLink() to get a new value for SIMM from SIML.

• Check value of SIMM.

1.3. Fields Common to Input Record Types 37

EPICS Documentation Sandbox

• If SIMM is NO, then call the device support read routine, set status to its return code, and return.

• If SIMM is YES or RAW, then

– Set alarm status to SIMM_ALARM and severity to SIMS, if SIMS is greater than zero.

– If the record simulation processing is synchronous (SDLY < 0) or the record is in the second phase of an
asynchronous processing, call dbGetLink() to read the input value from SIOL into SVAL. Set status to
the return code from dbGetLink(). If the call succeeded and SIMM is YES, write the value to VAL and
set the status to 2 (don’t convert), if SIMM is RAW and the record type supports conversion, cast the value
to RVAL and leave the status as 0 (convert).

Otherwise (record is in first phase of an asynchronous processing), set up a callback processing with the
delay specified in SDLY.

• If SIMM is not YES, NO or RAW, a SOFT alarm with a severity of INVALID is raised, and return status is set
to -1.

1.4 Fields Common to Output Record Types

This section describes fields that are found in many output record types. These fields usually have the same meaning
whenever they are used.

See also Fields Common to All Record Types and Fields Common to Input Records.

1.4.1 Output and Value Fields

The OUT field specifies an output link. It is used by the device support routines to decide where to send output. For
soft records, it can be a constant, a database link, or a channel access link. If the link is a constant, the result is no
output.

The DTYP field specifies the name of the device support module that will input values. Each record type has its own
set of device support routines. If a record type does not have any associated device support, DTYP is meaningless.

The VAL field contains the desired value before any conversions to raw output have been performed.

The OVAL field is used to decide when to invoke monitors. Archive and value change monitors are invoked if OVAL
is not equal to VAL. If a record type needs to make adjustments, OVAL is used to enforce the maximum rate of change
limit before converting the desired value to a raw value.

The RVAL field contains - whenever possible - the actual value sent to the hardware itself or to the associated device
driver.

The RBV field contains - whenever possible - the actual read back value obtained from the hardware itself or from the
associated device driver.

1.4.2 Device Support for Soft Records

Normally two soft output device support modules are provided, Soft Channel and and Raw Soft Channel. Both write
a value through the output link OUT. The Soft Channel module writes output from the value associated with OVAL or
VAL (if OVAL does not exist). The Raw Soft Channel support module writes the value associated with the RVAL field
after conversion has been performed.

The device support write routine normally calls dbPutLink() which writes a value through the OUT link, and returns
the status from that call.

38 Chapter 1. EPICS Record Reference Manual

https://metacpan.org/pod/dbCommonRecord
https://metacpan.org/pod/dbCommonInput

EPICS Documentation Sandbox

1.4.3 Input and Mode Select Fields

The DOL field is a link from which the desired output value can be fetched. DOL can be a constant, a database link,
or a channel access link. If DOL is a database or channel access link and OMSL is closed_loop, then VAL is obtained
from DOL.

The OMSL field selects the output mode. This field has either the value supervisory or closed_loop. DOL is
used to fetch VAL only if OMSL has the value closed_loop. By setting this field a record can be switched between
supervisory and closed loop mode of operation. While in closed loop mode, the VAL field cannot be set via dbPuts.

1.4.4 Output Mode Selection

The fields DOL and OMSL are used to allow the output record to be part of a closed loop control algorithm. OMSL
is meaningful only if DOL refers to a database or channel access link. It can have the values supervisory or
closed_loop. If the mode is supervisory, then nothing is done to VAL. If the mode is closed_loop and the
record type does not contain an OIF field, then each time the record is processed, VAL is set equal to the value obtained
from the location referenced by DOL. If the mode is closed_loop in record types with an OIF field and OIF is Full,
VAL is set equal to the value obtained from the location referenced by DOL; if OIF is Incremental VAL is incremented
by the value obtained from DOL.

1.4.5 Invalid Output Action Fields

The IVOA field specifies the output action for the case that the record is put into an INVALID alarm severity. IVOA
can be one of the following actions:

• Continue normally

• Don't drive outputs

• Set output to IVOV

The IVOV field contains the value for the IVOA action Set output to IVOV in engineering units. If a new severity
has been set to INVALID and IVOA is Set output to IVOV, then VAL is set to IVOV and converted to RVAL before
device support is called.

1.4.6 Invalid Alarm Output Action

Whenever an output record is put into INVALID alarm severity, IVOA specifies an action to take. The record support
process routine for each output record contains code which performs the following steps.

• If new severity is less than INVALID, then call writeValue():

• Else do the following:

– If IVOA is Continue normally then call writeValue().

– If IVOA is Don't drive outputs then do not write output.

– If IVOA is Set output to IVOV then set VAL to IVOV, call convert() if necessary, and then call
writeValue().

– If IVOA not one of the above, an error message is generated.

1.4. Fields Common to Output Record Types 39

EPICS Documentation Sandbox

1.4.7 Output Simulation Fields

The SIMM field controls simulation mode. It has either the value YES or NO. By setting this field to YES, the record
can be switched into simulation mode of operation. While in simulation mode, output will be forwarded through SIOL
instead of OUT.

The SIML field specifies the simulation mode location. This field can be a constant, a database link, or a channel
access link. If SIML is a database or channel access link, then SIMM is read from SIML. If SIML is a constant link
then SIMM is initialized with the constant value, but can be changed via database or channel access puts.

The SIOL field is a link that the output value is written to when the record is in simulation mode.

The SIMS field specifies the simulation mode alarm severity. When this field is set to a value other than NO_ALARM
and the record is in simulation mode, it will be put into alarm with this severity and a status of SIMM_ALARM.

The SDLY field specifies a delay (in seconds) to implement asynchronous processing in simulation mode. A positive
SDLY value will be used as delay between the first and second phase of processing in simulation mode. A negative
value (default) specifies synchronous processing.

The SSCN field specifies the SCAN mechanism to be used in simulation mode. This is specifically useful for ‘I/O Intr’
scanned records, which would otherwise never be scanned in simulation mode.

1.4.8 Simulation Mode for Output Records

An output record can be switched into simulation mode of operation by setting the value of SIMM to YES. During
simulation, the record will be put into alarm with a severity of SIMS and a status of SIMM_ALARM. While in simula-
tion mode, output values, in engineering units, will be written to SIOL instead of OUT. However, the output values are
never converted. Also, while the record is in simulation mode, there will be no calls to device support during record
processing.

Normally output records contain a private writeValue() routine which performs the following steps:

• If PACT is TRUE, the device support write routine is called, status is set to its return code, and readValue returns.

• Call dbGetLink() to get a new value for SIMM if SIML is a DB_LINK or a CA_LINK.

• Check value of SIMM.

• If SIMM is NO, then call the device support write routine, set status to its return code, and return.

• If SIMM is YES, then

– Set alarm status to SIMM_ALARM and severity to SIMS, if SIMS is greater than zero.

– If the record simulation processing is synchronous (SDLY < 0) or the record is in the second phase of an
asynchronous processing, call dbPutLink() to write the output value from VAL or OVAL to SIOL.

Otherwise (record is in first phase of an asynchronous processing), set up a callback processing with the
delay specified in SDLY.

– Set status to the return code from dbPutLink() and return.

• If SIMM is not YES or NO, a SOFT alarm with a severity of INVALID is raised, and return status is set to -1.

40 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

1.5 EPICS Record Types

1.5.1 Analog Input Record (ai)

{#airec-usage} This record type is normally used to obtain an analog value from a hardware input and convert it to
engineering units. The record supports linear and break-point conversion to engineering units, smoothing, alarm limits,
alarm filtering, and graphics and control limits.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Input Specification

These fields control where the record will read data from when it is processed:

Field Summary Type DCT Default Read Write CA PP
DTYP Device Type DEVICE Yes Yes Yes No

INP Input Specification INLINK Yes Yes Yes No

The DTYP field selects which device support layer should be responsible for providing input data to the record. The
ai device support layers provided by EPICS Base are documented in the Device Support section. External support
modules may provide additional device support for this record type. If not set explicitly, the DTYP value defaults to
the first device support that is loaded for the record type, which will usually be the Soft Channel support that comes
with Base.

The INP link field contains a database or channel access link or provides hardware address information that the device
support uses to determine where the input data should come from. The format for the INP field value depends on the
device support layer that is selected by the DTYP field. See Address Specification for a description of the various
hardware address formats supported.

1.5. EPICS Record Types 41

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#address-specification

EPICS Documentation Sandbox

Units Conversion

These fields control if and how the raw input value gets converted into engineering units:

Field Summary Type DCT Default Read Write CA PP
RVAL Current Raw Value LONG No Yes Yes Yes

ROFF Raw Offset ULONG No Yes Yes Yes

ASLO Adjustment Slope DOUBLE Yes 1 Yes Yes Yes
AOFF Adjustment Offset DOUBLE Yes Yes Yes Yes

LINR Linearization MENU menuConvert Yes Yes Yes Yes

ESLO Raw to EGU Slope DOUBLE Yes 1 Yes Yes Yes
EOFF Raw to EGU Offset DOUBLE Yes Yes Yes Yes

EGUL Engineer Units Low DOUBLE Yes Yes Yes Yes

EGUF Engineer Units Full DOUBLE Yes Yes Yes Yes

These fields are not used if the device support layer reads its value in engineering units and puts it directly into the VAL
field. This applies to Soft Channel and Async Soft Channel device support, and is also fairly common for GPIB and
similar high-level device interfaces.

If the device support sets the RVAL field, the LINR field controls how this gets converted into engineering units and
placed in the VAL field as follows:

• 1.

RVAL is converted to a double and ROFF is added to it.

• 2.

If ASLO is non-zero the value is multiplied by ASLO.

• 3.

AOFF is added.

• 4.

If LINR is NO CONVERSION the units conversion is finished after the above steps.

• 5.

If LINR is LINEAR or SLOPE, the value from step 3 above is multiplied by ESLO and EOFF is added to complete the
units conversion process.

• 6.

Any other value for LINR selects a particular breakpoint table to be used on the value from step 3 above.

The distinction between the LINEAR and SLOPE settings for the LINR field are in how the conversion parameters are
calculated:

• With LINEAR conversion the user must set EGUL and EGUF to the lowest and highest possible engineering units
values respectively that can be converted by the hardware. The device support knows the range of the raw data
and calculates ESLO and EOFF from them.

42 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

• SLOPE conversion requires the user to calculate the appropriate scaling and offset factors and put them directly
in ESLO and EOFF.

Smoothing Filter

This filter is usually only used if the device support sets the RVAL field and the Units Conversion process is used.
Device support that directly sets the VAL field may implement the filter if desired.

The filter is controlled with a single parameter field:

Field Summary Type DCT Default Read Write CA PP
SMOO Smoothing DOUBLE Yes Yes Yes No

The SMOO field should be set to a number between 0 and 1. If set to zero the filter is not used (no smoothing), while
if set to one the result is infinite smoothing (the VAL field will never change). The calculation performed is:

VAL = VAL * SMOO + (1 - SMOO) * New Data

where New Data was the result from the Units Conversion above. This implements a first-order infinite impulse re-
sponse (IIR) digital filter with z-plane pole at SMOO. The equivalent continuous-time filter time constant is given
by

= T / ln(SMOO)

where T is the time between record processing.

Undefined Check

If after applying the smoothing filter the VAL field contains a NaN (Not-a-Number) value, the UDF field is set to a non-
zero value, indicating that the record value is undefined, which will trigger a UDF_ALARMwith severity INVALID_ALARM.

Field Summary Type DCT Default Read Write CA PP
UDF Undefined UCHAR Yes 1 Yes Yes Yes

Operator Display Parameters

These parameters are used to present meaningful data to the operator. They do not affect the functioning of the record
at all.

• NAME is the record’s name, and can be useful when the PV name that a client knows is an alias for the record.

• DESC is a string that is usually used to briefly describe the record.

• EGU is a string of up to 16 characters naming the engineering units that the VAL field represents.

• The HOPR and LOPR fields set the upper and lower display limits for the VAL, HIHI, HIGH, LOW, and LOLO
fields.

• The PREC field determines the floating point precision (i.e. the number of digits to show after the decimal point)
with which to display VAL and the other DOUBLE fields.

See Fields Common to All Record Types for more about the record name (NAME) and description (DESC) fields.

1.5. EPICS Record Types 43

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

EGU Engineering Units STRING [16] Yes Yes Yes No

HOPR High Operating Range DOUBLE Yes Yes Yes No

LOPR Low Operating Range DOUBLE Yes Yes Yes No

PREC Display Precision SHORT Yes Yes Yes No

Alarm Limits

The user configures limit alarms by putting numerical values into the HIHI, HIGH, LOW and LOLO fields, and by
setting the associated alarm severity in the corresponding HHSV, HSV, LSV and LLSV menu fields.

The HYST field controls hysteresis to prevent alarm chattering from an input signal that is close to one of the limits
and suffers from significant readout noise.

The AFTC field sets the time constant on a low-pass filter that delays the reporting of limit alarms until the signal has
been within the alarm range for that number of seconds (the default AFTC value of zero retains the previous behavior).
The record must be scanned often enough for the filtering action to work effectively and the alarm severity can only
change when the record is processed, but that processing does not have to be regular; the filter uses the time since the
record last processed in its calculation. Setting AFTC to a positive number of seconds will delay the record going into
or out of a minor alarm severity or from minor to major severity until the input signal has been in the alarm range for
that number of seconds.

See Alarm Specification for a complete explanation of record alarms and of the standard fields. Alarm Fields lists other
fields related to alarms that are common to all record types.

44 Chapter 1. EPICS Record Reference Manual

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#alarm-specification

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
HIHI Hihi Alarm Limit DOUBLE Yes Yes Yes Yes

HIGH High Alarm Limit DOUBLE Yes Yes Yes Yes

LOW Low Alarm Limit DOUBLE Yes Yes Yes Yes

LOLO Lolo Alarm Limit DOUBLE Yes Yes Yes Yes

HHSV Hihi Severity MENU menuAlarmSevr Yes Yes Yes Yes

HSV High Severity MENU menuAlarmSevr Yes Yes Yes Yes

LSV Low Severity MENU menuAlarmSevr Yes Yes Yes Yes

LLSV Lolo Severity MENU menuAlarmSevr Yes Yes Yes Yes

HYST Alarm Deadband DOUBLE Yes Yes Yes No

AFTC Alarm Filter Time Constant DOUBLE Yes Yes Yes No

LALM Last Value Alarmed DOUBLE No Yes No No

Monitor Parameters

These parameters are used to determine when to send monitors placed on the VAL field. The monitors are sent when
the current value exceeds the last transmitted value by the appropriate deadband. If these fields are set to zero, a monitor
will be triggered every time the value changes; if set to -1, a monitor will be sent every time the record is processed.

The ADEL field sets the deadband for archive monitors (DBE_LOG events), while the MDEL field controls value mon-
itors (DBE_VALUE events).

The remaining fields are used by the record at run-time to implement the record monitoring functionality.

Field Summary Type DCT Default Read Write CA PP
ADEL Archive Deadband DOUBLE Yes Yes Yes No

MDEL Monitor Deadband DOUBLE Yes Yes Yes No

ALST Last Value Archived DOUBLE No Yes No No

MLST Last Val Monitored DOUBLE No Yes No No

ORAW Previous Raw Value LONG No Yes No No

1.5. EPICS Record Types 45

EPICS Documentation Sandbox

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML) is YES or RAW, the record is put in SIMS severity and the value is fetched through
SIOL (buffered in SVAL). If SIMM is YES, SVAL is written to VAL without conversion, if SIMM is RAW, SVAL is
trancated to RVAL and converted. SSCN sets a different SCAN mechanism to use in simulation mode. SDLY sets a
delay (in sec) that is used for asynchronous simulation processing.

See Input Simulation Fields for more information on simulation mode and its fields.

Field Summary Type DCT Default Read Write CA PP
SIML Simulation Mode Link INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuSimm No Yes Yes No

SIOL Simulation Input Link INLINK Yes Yes Yes No

SVAL Simulation Value DOUBLE No Yes Yes No

SIMS Simulation Mode Severity MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

Device Support Interface

The record requires device support to provide an entry table (dset) which defines the following members:

typedef struct {
long number;
long (*report)(int level);
long (*init)(int after);
long (*init_record)(aiRecord *prec);
long (*get_ioint_info)(int cmd, aiRecord *prec, IOSCANPVT *piosl);
long (*read_ai)(aiRecord *prec);
long (*special_linconv)(aiRecord *prec, int after);

} aidset;

The module must set number to at least 6, and provide a pointer to its read_ai() routine; the other function pointers
may be NULL if their associated functionality is not required for this support layer. Most device supports also provide
an init_record() routine to configure the record instance and connect it to the hardware or driver support layer, and
if using the record’s “Units Conversion” features they set special_linconv() as well.

The individual routines are described below.

46 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Device Support Routines

long report(int level)

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

long init(int after)

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

long init_record(aiRecord *prec)

This optional routine is called by the record initialization code for each ai record instance that has its DTYP field set
to use this device support. It is normally used to check that the INP address is the expected type and that it points
to a valid device; to allocate any record-specific buffer space and other memory; and to connect any communication
channels needed for the read_ai() routine to work properly.

If the record type’s unit conversion features are used, the init_record() routine should calculate appropriate values
for the ESLO and EOFF fields from the EGUL and EGUF field values. This calculation only has to be performed if the
record’s LINR field is set to LINEAR, but it is not necessary to check that condition first. This same calculation takes
place in the special_linconv() routine, so the implementation can usually just call that routine to perform the task.

long get_ioint_info(int cmd, aiRecord *prec, IOSCANPVT *piosl)

This optional routine is called whenever the record’s SCAN field is being changed to or from the value I/O Intr to
find out which I/O Interrupt Scan list the record should be added to or deleted from. If this routine is not provided, it
will not be possible to set the SCAN field to the value I/O Intr at all.

The cmd parameter is zero when the record is being added to the scan list, and one when it is being removed from the
list. The routine must determine which interrupt source the record should be connected to, which it indicates by the
scan list that it points the location at *piosl to before returning. It can prevent the SCAN field from being changed at
all by returning a non-zero value to its caller.

In most cases the device support will create the I/O Interrupt Scan lists that it returns for itself, by calling void
scanIoInit(IOSCANPVT *piosl) once for each separate interrupt source. That routine allocates memory and inial-
izes the list, then passes back a pointer to the new list in the location at *piosl.

When the device support receives notification that the interrupt has occurred, it announces that to the IOC by calling
void scanIoRequest(IOSCANPVT iosl)which will arrange for the appropriate records to be processed in a suitable
thread. The scanIoRequest() routine is safe to call from an interrupt service routine on embedded architectures
(vxWorks and RTEMS).

long read_ai(aiRecord *prec)

This essential routine is called when the record wants a new value from the addressed device. It is responsible for
performing (or at least initiating) a read operation, and (eventually) returning its value to the record.

. . . PACT and asynchronous processing . . .

. . . return value . . .

1.5. EPICS Record Types 47

EPICS Documentation Sandbox

long special_linconv(aiRecord *prec, int after)

This optional routine should be provided if the record type’s unit conversion features are used by the device support’s
read_ai() routine returning a status value of zero. It is called by the record code whenever any of the the fields LINR,
EGUL or EGUF are modified and LINR has the value LINEAR. The routine must calculate and set the fields EOFF and
ESLO appropriately based on the new values of EGUL and EGUF.

These calculations can be expressed in terms of the minimum and maximum raw values that the read_ai() routine
can put in the RVAL field. When RVAL is set to RVAL_max the VAL field will be set to EGUF, and when RVAL is set
to RVAL_min the VAL field will become EGUL.

The formulae to use are:

EOFF = (RVAL_max * EGUL RVAL_min * EGUF) / (RVAL_max RVAL_min)

ESLO = (EGUF EGUL) / (RVAL_max RVAL_min)

Note that the record support sets EOFF to EGUL before calling this routine, which is a very common case (when
RVAL_min is zero).

Extended Device Support

. . .

1.5.2 Analog Output Record (ao)

This record type is normally used to send an analog value to an output device, converting it from engineering units
into an integer value if necessary. The record supports alarm and drive limits, rate-of-change limiting, output value
integration, linear and break-point conversion from engineering units, and graphics and control limits.

Record-specific Menus

Menu aoOIF

The OIF field which uses this menu controls whether the record acts as an integrator (Incremental) or not (Full).

Index Identifier Choice String
0 aoOIF_Full Full
1 aoOIF_Incremental Incremental

Parameter Fields

The record-specific fields are described below.

48 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Output Value Determination

These fields control how the record determines the value to be output when it gets processed:

Field Summary Type DCT Default Read Write CA PP
OMSL Output Mode Select MENU menuOmsl Yes Yes Yes No

DOL Desired Output Link INLINK Yes Yes Yes No

OIF Out Full/Incremental MENU aoOIF Yes Yes Yes No

PVAL Previous value DOUBLE No Yes No No

DRVH Drive High Limit DOUBLE Yes Yes Yes Yes

DRVL Drive Low Limit DOUBLE Yes Yes Yes Yes

VAL Desired Output DOUBLE Yes Yes Yes Yes

OROC Output Rate of Change DOUBLE Yes Yes Yes No

OVAL Output Value DOUBLE No Yes Yes No

The following steps are performed in order during record processing.

Fetch Value, Integrate

The OMSL menu field is used to determine whether the DOL link and OIF menu fields should be used during processing
or not:

• If OMSL is supervisory the DOL and OIF fields are not used. The new output value is taken from the VAL
field, which may have been set from elsewhere.

• If OMSL is closed_loop the DOL link field is read to obtain a value; if OIF is Incremental and the DOL
link was read successfully, the record’s previous output value PVAL is added to it.

1.5. EPICS Record Types 49

EPICS Documentation Sandbox

Drive Limits

The output value is now clipped to the range DRVL to DRVH inclusive, provided that DRVH > DRVL. The result is
copied into both the VAL and PVAL fields.

Limit Rate of Change

If the OROC field is not zero, the VAL field is now adjusted so it is no more than OROC different to the previous
output value given in OVAL. OROC thus determines the maximum change in the output value that can occur each time
the record gets processed. The result is copied into the OVAL field, which is used as the input to the following Units
Conversion processing stage.

Units Conversion

. . .

For analog output records that do not use the Soft Channel device support routine, the specified conversions (if any) are
performed on the OVAL field and the resulting value in the RVAL field is sent to the address contained in the output
link after it is adjusted by the values in the AOFF and ASLO fields.

Field Summary Type DCT Default Read Write CA PP
LINR Linearization MENU menuConvert Yes Yes Yes Yes

RVAL Current Raw Value LONG No Yes Yes Yes

ROFF Raw Offset ULONG No Yes Yes Yes

EGUF Eng Units Full DOUBLE Yes Yes Yes Yes

EGUL Eng Units Low DOUBLE Yes Yes Yes Yes

AOFF Adjustment Offset DOUBLE Yes Yes Yes Yes

ASLO Adjustment Slope DOUBLE Yes Yes Yes Yes

ESLO EGU to Raw Slope DOUBLE Yes 1 Yes Yes Yes
EOFF EGU to Raw Offset DOUBLE Yes Yes Yes Yes

Conversion Related Fields and the Conversion Process

Except for analog outputs that use Soft Channel device support, the LINR field determines if a conversion is performed
and which conversion algorithm is used to convert OVAL to RVAL.

The LINR field can specify LINEAR or SLOPE for linear conversions, NO CONVERSION for no conversions at all, or the
name of a breakpoint table such as typeKdegC for breakpoint conversions.

The EGUF and EGUL fields should be set for LINEAR conversions, and the ESLO and EOFF fields for SLOPE con-
version. Note that none of these fields have any significance for records that use the Soft Channel device support
module.

50 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

• EGUF, EGUF

The user must set these fields when configuring the database for records that use LINEAR conversions. They are
used to calculate the values for ESLO and EOFF. See Conversion Specification for more information on how to
calculate these fields.

• ESLO, EOFF

Computed by device support from EGUF and EGUL when LINR specifies LINEAR. These values must be sup-
plied by the user when LINR specifies SLOPE. Used only when LINR is LINEAR or SLOPE.

• AOFF, ASLO

These fields are adjustment parameters for the raw output values. They are applied to the raw output value after
conversion from engineering units.

• ROFF

This field can be used to offset the raw value generated by the conversion process, which is needed for some
kinds of hardware.

Conversion proceeds as follows:

• 1. If LINR==LINEAR or LINR==SLOPE, then X = (VAL - EOFF) / ESLO, else if
LINR==NO_CONVERSION, then X = VAL, else X is obtained via breakpoint table.

• 2. X = (X - AOFF) / ASLO

• 3. RVAL = round(X) - ROFF

To see how the Raw Soft Channel device support routine uses these fields, see “Device Support For Soft Records”
below for more information.

Output Specification

The analog output record sends its desired output to the address in the OUT field. For analog outputs that write their
values to devices, the OUT field must specify the address of the I/O card. In addition, the DTYP field must contain
the name of the device support module. Be aware that the address format differs according to the I/O bus used. See
Address Specification for information on the format of hardware addresses.

For soft records the output link can be a database link, a channel access link, or a constant value. If the link is a constant,
no output is sent.

Field Summary Type DCT Default Read Write CA PP
DTYP Device Type DEVICE Yes Yes Yes No

OUT Output Specification OUTLINK Yes Yes Yes No

1.5. EPICS Record Types 51

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#address-specification

EPICS Documentation Sandbox

Operator Display Parameters

These parameters are used to present meaningful data to the operator. They display the value and other parameters of
the analog output either textually or graphically.

EGU is a string of up to 16 characters describing the units that the analog output measures. It is retrieved by the
get_units record support routine.

The HOPR and LOPR fields set the upper and lower display limits for the VAL, OVAL, PVAL, HIHI, HIGH, LOW,
and LOLO fields. Both the get_graphic_double and get_control_double record support routines retrieve these fields.
If these values are defined, they must be in the range: DRVL <= LOPR <= HOPR <= DRVH.

The PREC field determines the floating point precision with which to display VAL, OVAL and PVAL. It is used when-
ever the get_precision record support routine is called.

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
EGU Engineering Units STRING [16] Yes Yes Yes No

HOPR High Operating Range DOUBLE Yes Yes Yes No

LOPR Low Operating Range DOUBLE Yes Yes Yes No

PREC Display Precision SHORT Yes Yes Yes No

NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Alarm Parameters

The possible alarm conditions for analog outputs are the SCAN, READ, INVALID and limit alarms. The SCAN,
READ, and INVALID alarms are called by the record or device support routines.

The limit alarms are configured by the user in the HIHI, LOLO, HIGH, and LOW fields, which must be floating-point
values. For each of these fields, there is a corresponding severity field which can be either NO_ALARM, MINOR, or
MAJOR.

See Invalid Output Action Fields for more information on the IVOA and IVOV fields.

Alarm Fields lists other fields related to a alarms that are common to all record types.

52 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
HIHI Hihi Alarm Limit DOUBLE Yes Yes Yes Yes

HIGH High Alarm Limit DOUBLE Yes Yes Yes Yes

LOW Low Alarm Limit DOUBLE Yes Yes Yes Yes

LOLO Lolo Alarm Limit DOUBLE Yes Yes Yes Yes

HHSV Hihi Severity MENU menuAlarmSevr Yes Yes Yes Yes

HSV High Severity MENU menuAlarmSevr Yes Yes Yes Yes

LSV Low Severity MENU menuAlarmSevr Yes Yes Yes Yes

LLSV Lolo Severity MENU menuAlarmSevr Yes Yes Yes Yes

HYST Alarm Deadband DOUBLE Yes Yes Yes No

IVOA INVALID output action MENU menuIvoa Yes Yes Yes No

IVOV INVALID output value DOUBLE Yes Yes Yes No

Monitor Parameters

These parameters are used to specify deadbands for monitors on the VAL field. The monitors are sent when the value
field exceeds the last monitored field by the specified deadband. If these fields have a value of zero, everytime the
value changes, a monitor will be triggered; if they have a value of -1, everytime the record is processed, monitors are
triggered. ADEL is the deadband for archive monitors, and MDEL the deadband for all other types of monitors. See
Monitor Specification for a complete explanation of monitors.

Field Summary Type DCT Default Read Write CA PP
ADEL Archive Deadband DOUBLE Yes Yes Yes No

MDEL Monitor Deadband DOUBLE Yes Yes Yes No

Run-time Parameters

These parameters are used by the run-time code for processing the analog output. They are not configurable. They
represent the current state of the record. The record support routines use some of them for more efficient processing.

The ORAW field is used to decide if monitors should be triggered for RVAL when monitors are triggered for VAL. The
RBV field is the actual read back value obtained from the hardware itself or from the associated device driver. It is the
responsibility of the device support routine to give this field a value.

ORBV is used to decide if monitors should be triggered for RBV at the same time monitors are triggered for changes
in VAL.

The LALM, MLST, and ALST fields are used to implement the hysteresis factors for monitor callbacks.

1.5. EPICS Record Types 53

EPICS Documentation Sandbox

The INIT field is used to initialize the LBRK field and for smoothing.

The PBRK field contains a pointer to the current breakpoint table (if any), and LBRK contains a pointer to the last
breakpoint table used.

The OMOD field indicates whether OVAL differs from VAL. It will be different if VAL or OVAL have changed since
the last time the record was processed, or if VAL has been adjusted by OROC during the current processing.

Field Summary Type DCT Default Read Write CA PP
ORAW Previous Raw Value LONG No Yes No No

RBV Readback Value LONG No Yes No No

ORBV Prev Readback Value LONG No Yes No No

LALM Last Value Alarmed DOUBLE No Yes No No

ALST Last Value Archived DOUBLE No Yes No No

MLST Last Val Monitored DOUBLE No Yes No No

INIT Initialized? SHORT No Yes No No

PBRK Ptrto brkTable NOACCESS No No No No

LBRK LastBreak Point SHORT No Yes No No

PVAL Previous value DOUBLE No Yes No No

OMOD Was OVAL modified? UCHAR No Yes No No

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML, if populated) is YES, the record is put in SIMS severity and the value is written through
SIOL, without conversion. If SIMM is RAW, the value is converted and RVAL is written. SSCN sets a different SCAN
mechanism to use in simulation mode. SDLY sets a delay (in sec) that is used for asynchronous simulation processing.

See Output Simulation Fields for more information on simulation mode and its fields.

Field Summary Type DCT Default Read Write CA PP
SIML Simulation Mode Link INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuSimm No Yes Yes No

SIOL Simulation Output Link OUTLINK Yes Yes Yes No

SIMS Simulation Mode Severity MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

54 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Record Support

Record Support Routines

The following are the record support routines that would be of interest to an application developer. Other routines are
the get_units, get_precision, get_graphic_double, and get_control_double routines.

• init_record

long init_record(aoRecord *prec, int pass);

This routine initializes SIMM if SIML is a constant or creates a channel access link if SIML is PV_LINK. If
SIOL is PV_LINK a channel access link is created.

This routine next checks to see that device support is available. If DOL is a constant, then VAL is initialized with
its value and UDF is set to FALSE.

The routine next checks to see if the device support write routine is defined. If either device support or the device
support write routine does not exist, an error message is issued and processing is terminated.

For compatibility with old device supports that don’t know EOFF, if both EOFF and ESLO have their default
value, EOFF is set to EGUL.

If device support includes init_record(), it is called.

INIT is set TRUE. This causes PBRK, LBRK, and smoothing to be re-initialized. If “backwards” linear conver-
sion is requested, then VAL is computed from RVAL using the algorithm:

VAL = ((RVAL+ROFF) * ASLO + AOFF) * ESLO + EOFF

and UDF is set to FALSE.

For breakpoint conversion, a call is made to cvtEngToRawBpt and UDF is then set to FALSE. PVAL is set to
VAL.

• process

long process(aoRecord *prec);

See next section.

• special

long special(DBADDR *paddr, int after);

The only special processing for analog output records is SPC_LINCONV which is invoked whenever either of
the fields LINR, EGUF, EGUL or ROFF is changed If the device support routine special_linconv exists it is
called.

INIT is set TRUE. This causes PBRK, LBRK, and smoothing to be re-initialized.

• get_alarm_double

long get_alarm_double(DBADDR *, struct dbr_alDouble *);

Sets the following values:

upper_alarm_limit = HIHI
upper_warning_limit = HIGH
lower_warning_limit = LOW
lower_alarm_limit = LOLO

1.5. EPICS Record Types 55

EPICS Documentation Sandbox

Record Processing

Routine process implements the following algorithm:

• 1. Check to see that the appropriate device support module exists. If it doesn’t, an error message is issued and
processing is terminated with the PACT field set to TRUE. This ensures that processes will no longer be
called for this record. Thus error storms will not occur.

• 2. Check PACT: If PACT is FALSE call fetch_values and convert which perform the following steps:

– fetch_values:

∗ if DOL is DB_LINK and OMSL is CLOSED_LOOP then get value from DOL

∗ if OIF is INCREMENTAL then set value = value + VAL else value = VAL

– convert:

∗ If Drive limits are defined force value to be within limits

∗ Set VAL equal to value

∗ Set UDF to FALSE.

∗ If OVAL is undefined set it equal to value

∗ If OROC is defined and not 0 make |value-OVAL| <=OROC

∗ Set OVAL equal to value

∗ Compute RVAL from OVAL. using linear or break point table conversion. For linear conversions the
algorithm is RVAL = (OVAL-EOFF)/ESLO.

∗ For break point table conversion a call is made to cvtEngToRawBpt.

∗ After that, for all conversion types AOFF, ASLO, and ROFF are calculated in, using the formula RVAL
= (RVAL -AOFF) / ASLO - ROFF.

• 3. Check alarms: This routine checks to see if the new VAL causes the alarm status and severity to change.
If so, NSEV, NSTA and y are set. It also honors the alarm hysteresis factor (HYST). Thus the value must
change by at least HYST before the alarm status and severity is reduced.

• 4. Check severity and write the new value. See Invalid Alarm Output Action for details on how invalid alarms
affect output records.

• 5. If PACT has been changed to TRUE, the device support write output routine has started but has not com-
pleted writing the new value. In this case, the processing routine merely returns, leaving PACT TRUE.

• 6. Check to see if monitors should be invoked:

– Alarm monitors are invoked if the alarm status or severity has changed.

– Archive and value change monitors are invoked if ADEL and MDEL conditions are met.

– Monitors for RVAL and for RBV are checked whenever other monitors are invoked.

– NSEV and NSTA are reset to 0.

• 7. Scan forward link if necessary, set PACT and INIT FALSE, and return.

56 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Device Support

Fields Of Interest To Device Support

Each analog output record must have an associated set of device support routines. The primary responsibility of the
device support routines is to output a new value whenever write_ao is called. The device support routines are primarily
interested in the following fields:

• PACT — Process Active, used to indicate asynchronous completion

• DPVT — Device Private, reserved for device support to use

• OUT — Output Link, provides addressing information

• EGUF — Engineering Units Full

• EGUL — Engineering Units Low

• ESLO — Engineering Unit Slope

• EOFF — Engineering Unit Offset

• OVAL — Output Value, in Engineering units

• RVAL — Raw Output Value, after conversion

Device Support routines

Device support consists of the following routines:

• report

long report(int level);

This optional routine is called by the IOC command dbior and is passed the report level that was requested by
the user. It should print a report on the state of the device support to stdout. The level parameter may be used
to output increasingly more detailed information at higher levels, or to select different types of information with
different levels. Level zero should print no more than a small summary.

• init

long init(int after);

This optional routine is called twice at IOC initialization time. The first call happens before any of the
init_record() calls are made, with the integer parameter after set to 0. The second call happens after
all of the init_record() calls have been made, with after set to 1.

• init_record

long init_record(aoRecord *prec);

This optional routine is called by the record initialization code for each ao record instance that has its DTYP
field set to use this device support. It is normally used to check that the OUT address has the expected type
and points to a valid device; to allocate any record-specific buffer space and other memory; and to connect any
communication channels needed for the write_ao() routine to work properly.

If the record type’s unit conversion features are used, the init_record() routine should calculate appropriate
values for the ESLO and EOFF fields from the EGUL and EGUF field values. This calculation only has to be
performed if the record’s LINR field is set to LINEAR, but it is not necessary to check that condition first. This
same calculation takes place in the special_linconv() routine, so the implementation can usually just call
that routine to perform the task.

1.5. EPICS Record Types 57

EPICS Documentation Sandbox

If the the last output value can be read back from the hardware, this routine should also fetch that value and put
it into the record’s RVAL or VAL field. The return value should be zero if the RVAL field has been set, or 2 if
either the VAL field has been set or if the last output value cannot be retrieved.

• get_ioint_info

long get_ioint_info(int cmd, aoRecord *prec, IOSCANPVT *piosl);

This optional routine is called whenever the record’s SCAN field is being changed to or from the value I/O
Intr to find out which I/O Interrupt Scan list the record should be added to or deleted from. If this routine is
not provided, it will not be possible to set the SCAN field to the value I/O Intr at all.

The cmd parameter is zero when the record is being added to the scan list, and one when it is being removed
from the list. The routine must determine which interrupt source the record should be connected to, which it
indicates by the scan list that it points the location at *piosl to before returning. It can prevent the SCAN field
from being changed at all by returning a non-zero value to its caller.

In most cases the device support will create the I/O Interrupt Scan lists that it returns for itself, by calling
void scanIoInit(IOSCANPVT *piosl) once for each separate interrupt source. That API allocates mem-
ory and inializes the list, then passes back a pointer to the new list in the location at *piosl. When the de-
vice support receives notification that the interrupt has occurred, it announces that to the IOC by calling void
scanIoRequest(IOSCANPVT iosl)which will arrange for the appropriate records to be processed in a suitable
thread. The scanIoRequest() routine is safe to call from an interrupt service routine on embedded architec-
tures (vxWorks and RTEMS).

• write_ao

long write_ao(aoRecord *prec);

This essential routine is called whenever the record has a new output value to send to the device. It is responsible
for performing the write operation, using either the engineering units value found in the record’s OVAL field, or
the raw value from the record’s RVAL field if the record type’s unit conversion facilities are used. A return value
of zero indicates success, any other value indicates that an error occurred.

This routine must not block (busy-wait) if the device takes more than a few microseconds to accept the new value.
In that case the routine must use asynchronous completion to tell the record when the write operation eventually
completes. It signals that this is an asynchronous operation by setting the record’s PACT field to TRUE before it
returns, having arranged for the record’s process() routine to be called later once the write operation is over.
When that happens the write_ao() routine will be called again with PACT still set to TRUE; it should then set
it to FALSE to indicate the write has completed, and return.

• special_linconv

long special_linconv(aoRecord *prec, int after);

This optional routine should be provided if the record type’s unit conversion features are used by the device
support’s write_ao() routine utilizing the RVAL field rather than OVAL or VAL. It is called by the record code
whenever any of the the fields LINR, EGUL or EGUF are modified and LINR has the value LINEAR. The routine
must calculate and set the fields EOFF and ESLO appropriately based on the new values of EGUL and EGUF.

These calculations can be expressed in terms of the minimum and maximum raw values that the write_ao()
routine can accept in the RVAL field. When VAL is EGUF the RVAL field will be set to RVAL_max, and when
VAL is EGUL the RVAL field will become RVAL_min. The fomulae to use are:

EOFF = (_RVAL_max_ * EGUL _RVAL_min_ * EGUF) /
(_RVAL_max_ _RVAL_min_)

ESLO = (EGUF EGUL) / (_RVAL_max_ _RVAL_min_)

Note that the record support sets EOFF to EGUL before calling this routine, which is a very common case
(RVAL_min is zero).

58 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Device Support For Soft Records

Two soft device support modules Soft Channel and Raw Soft Channel are provided for output records not related to
actual hardware devices. The OUT link type must be either a CONSTANT, DB_LINK, or CA_LINK.

Soft Channel

This module writes the current value of OVAL.

If the OUT link type is PV_LINK, then dbCaAddInlink is called by init_record(). init_record() always returns
a value of 2, which means that no conversion will ever be attempted.

write_ao calls recGblPutLinkValue to write the current value of VAL. See Soft Output for details.

Raw Soft Channel

This module is like the previous except that it writes the current value of RVAL.

1.5.3 Array Subroutine Record (aSub)

The aSub record is an advanced variant of the ‘sub’ (subroutine) record which has a number of additional features:

• It provides 20 different input and output fields which can hold array or scalar values. The types and array capac-
ities of these are user configurable, and they all have an associated input or output link.

• The name of the C or C++ subroutine to be called when the record processes can be changed dynamically while
the IOC is running. The name can either be fetched from another record using an input link, or written directly
into the SNAM field.

• The user can choose whether monitor events should be posted for the output fields.

• The VAL field is set to the return value from the user subroutine, which is treated as a status value and controls
whether the output links will be used or not. The record can also raise an alarm with a chosen severity if the
status value is non-zero.

Record-specific Menus

Menu aSubLFLG

The LFLG menu field controls whether the SUBL link will be read to update the name of the subroutine to be called
when the record processes.

Index Identifier Choice String
0 aSubLFLG_IGNORE IGNORE
1 aSubLFLG_READ READ

1.5. EPICS Record Types 59

EPICS Documentation Sandbox

Menu aSubEFLG

The EFLG menu field indicates whether monitor events should be posted for the VALA..VALU output value fields.

Index Identifier Choice String
0 aSubEFLG_NEVER NEVER
1 aSubEFLG_ON_CHANGE ON CHANGE
2 aSubEFLG_ALWAYS ALWAYS

Parameter Fields

The record-specific fields are described below.

Subroutine Fields

The VAL field is set to the value returned by the user subroutine. The value is treated as an error status value where zero
mean success. The output links OUTA . . . OUTU will only be used to forward the associated output value fields when
the subroutine has returned a zero status. If the return status was less than zero, the record will be put into SOFT_ALARM
state with severity given by the BRSV field.

The INAM field may be used to name a subroutine that will be called once at IOC initialization time.

LFLG tells the record whether to read or ignore the SUBL link. If the value is READ, then the name of the subroutine to
be called at process time is read from SUBL. If the value is IGNORE, the name of the subroutine is that currently held
in SNAM.

A string is read from the SUBL link to fetch the name of the subroutine to be run during record processing.

SNAM holds the name of the subroutine to be called when the record processes. The value in this field can be over-
written by the SUBL link if LFLG is set to READ.

The SADR field is only accessible from C code; it points to the subroutine to be called.

The CADR field may be set by the user subroutine to point to another function that will be called immediately before
setting the SADR field to some other routine. This allows the main user subroutine to allocate resources when it is first
called and be able to release them again when they are no longer needed.

60 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Field Summary Type DCT De-
fault

Read Write CA PP

VAL Subr. return value LONG No Yes Yes No

OVAL Old return value LONG No Yes No No

INAM Initialize Subr. Name STRING [41] Yes Yes No No

LFLG Subr. Input Enable MENU aSubLFLG Yes Yes Yes No

SUBL Subroutine Name Link INLINK Yes Yes No No

SNAM Process Subr. Name STRING [41] Yes Yes Yes No

ONAM Old Subr. Name STRING [41] Yes Yes No No

SADR Subroutine Address NOACCESS No No No No

CADR Subroutine Cleanup Address NOACCESS No No No No

BRSV Bad Return Severity MENU menuAlarmSevr Yes Yes Yes Yes

Operator Display Parameters

The PREC field specifies the number of decimal places with which to display the values of the value fields A . . . U and
VALA . . . VALU. Except when it doesn’t.

Output Event Flag

This field tells the record when to post change events on the output fields VALA . . . VALU. If the value is NEVER, events
are never posted. If the value is ALWAYS, events are posted every time the record processes. If the value is ON CHANGE,
events are posted when any element of an array changes value. This flag controls value, log (archive) and alarm change
events.

Field Summary Type DCT Default Read Write CA PP
EFLG Output Event Flag MENU aSubEFLG Yes 1 Yes Yes No

Input Link Fields

The input links from where the values of A,. . . ,U are fetched during record processing.

1.5. EPICS Record Types 61

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
INPA Input Link A INLINK Yes Yes Yes No

INPB Input Link B INLINK Yes Yes Yes No

INPC Input Link C INLINK Yes Yes Yes No

INPD Input Link D INLINK Yes Yes Yes No

INPE Input Link E INLINK Yes Yes Yes No

INPF Input Link F INLINK Yes Yes Yes No

INPG Input Link G INLINK Yes Yes Yes No

INPH Input Link H INLINK Yes Yes Yes No

INPI Input Link I INLINK Yes Yes Yes No

INPJ Input Link J INLINK Yes Yes Yes No

INPK Input Link K INLINK Yes Yes Yes No

INPL Input Link L INLINK Yes Yes Yes No

INPM Input Link M INLINK Yes Yes Yes No

INPN Input Link N INLINK Yes Yes Yes No

INPO Input Link O INLINK Yes Yes Yes No

INPP Input Link P INLINK Yes Yes Yes No

INPQ Input Link Q INLINK Yes Yes Yes No

INPR Input Link R INLINK Yes Yes Yes No

INPS Input Link S INLINK Yes Yes Yes No

INPT Input Link T INLINK Yes Yes Yes No

INPU Input Link U INLINK Yes Yes Yes No

62 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Input Value Fields

Thse fields hold the scalar or array values fetched through the input links INPA,. . . ,INPU.

Field Summary Type DCT Default Read Write CA PP
A Input value A Set by FTA No Yes Yes No

B Input value B Set by FTB No Yes Yes No

C Input value C Set by FTC No Yes Yes No

D Input value D Set by FTD No Yes Yes No

E Input value E Set by FTE No Yes Yes No

F Input value F Set by FTF No Yes Yes No

G Input value G Set by FTG No Yes Yes No

H Input value H Set by FTH No Yes Yes No

I Input value I Set by FTI No Yes Yes No

J Input value J Set by FTJ No Yes Yes No

K Input value K Set by FTK No Yes Yes No

L Input value L Set by FTL No Yes Yes No

M Input value M Set by FTM No Yes Yes No

N Input value N Set by FTN No Yes Yes No

O Input value O Set by FTO No Yes Yes No

P Input value P Set by FTP No Yes Yes No

Q Input value Q Set by FTQ No Yes Yes No

R Input value R Set by FTR No Yes Yes No

S Input value S Set by FTS No Yes Yes No

T Input value T Set by FTT No Yes Yes No

U Input value U Set by FTU No Yes Yes No

1.5. EPICS Record Types 63

EPICS Documentation Sandbox

Input Value Data Types

Field types of the input value fields. The choices can be found by following the link to the menuFtype definition.

Field Summary Type DCT Default Read Write CA PP
FTA Type of A MENU menuFtype Yes DOUBLE Yes No No
FTB Type of B MENU menuFtype Yes DOUBLE Yes No No
FTC Type of C MENU menuFtype Yes DOUBLE Yes No No
FTD Type of D MENU menuFtype Yes DOUBLE Yes No No
FTE Type of E MENU menuFtype Yes DOUBLE Yes No No
FTF Type of F MENU menuFtype Yes DOUBLE Yes No No
FTG Type of G MENU menuFtype Yes DOUBLE Yes No No
FTH Type of H MENU menuFtype Yes DOUBLE Yes No No
FTI Type of I MENU menuFtype Yes DOUBLE Yes No No
FTJ Type of J MENU menuFtype Yes DOUBLE Yes No No
FTK Type of K MENU menuFtype Yes DOUBLE Yes No No
FTL Type of L MENU menuFtype Yes DOUBLE Yes No No
FTM Type of M MENU menuFtype Yes DOUBLE Yes No No
FTN Type of N MENU menuFtype Yes DOUBLE Yes No No
FTO Type of O MENU menuFtype Yes DOUBLE Yes No No
FTP Type of P MENU menuFtype Yes DOUBLE Yes No No
FTQ Type of Q MENU menuFtype Yes DOUBLE Yes No No
FTR Type of R MENU menuFtype Yes DOUBLE Yes No No
FTS Type of S MENU menuFtype Yes DOUBLE Yes No No
FTT Type of T MENU menuFtype Yes DOUBLE Yes No No
FTU Type of U MENU menuFtype Yes DOUBLE Yes No No

Input Value Array Capacity

These fields specify how many array elements the input value fields may hold.

Note that access to the NOT field from C code must use the field name in upper case, e.g. prec->NOT since the lower-case
not is a reserved word in C++ and cannot be used as an identifier.

64 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
NOA Max. elements in A ULONG Yes 1 Yes No No
NOB Max. elements in B ULONG Yes 1 Yes No No
NOC Max. elements in C ULONG Yes 1 Yes No No
NOD Max. elements in D ULONG Yes 1 Yes No No
NOE Max. elements in E ULONG Yes 1 Yes No No
NOF Max. elements in F ULONG Yes 1 Yes No No
NOG Max. elements in G ULONG Yes 1 Yes No No
NOH Max. elements in H ULONG Yes 1 Yes No No
NOI Max. elements in I ULONG Yes 1 Yes No No
NOJ Max. elements in J ULONG Yes 1 Yes No No
NOK Max. elements in K ULONG Yes 1 Yes No No
NOL Max. elements in L ULONG Yes 1 Yes No No
NOM Max. elements in M ULONG Yes 1 Yes No No
NON Max. elements in N ULONG Yes 1 Yes No No
NOO Max. elements in O ULONG Yes 1 Yes No No
NOP Max. elements in P ULONG Yes 1 Yes No No
NOQ Max. elements in Q ULONG Yes 1 Yes No No
NOR Max. elements in R ULONG Yes 1 Yes No No
NOS Max. elements in S ULONG Yes 1 Yes No No
NOT Max. elements in T ULONG Yes 1 Yes No No
NOU Max. elements in U ULONG Yes 1 Yes No No

Input Value Array Size

These fields specify how many array elements the input value fields currently contain.

Field Summary Type DCT Default Read Write CA PP
NEA Num. elements in A ULONG No 1 Yes No No
NEB Num. elements in B ULONG No 1 Yes No No
NEC Num. elements in C ULONG No 1 Yes No No
NED Num. elements in D ULONG No 1 Yes No No
NEE Num. elements in E ULONG No 1 Yes No No
NEF Num. elements in F ULONG No 1 Yes No No
NEG Num. elements in G ULONG No 1 Yes No No
NEH Num. elements in H ULONG No 1 Yes No No
NEI Num. elements in I ULONG No 1 Yes No No
NEJ Num. elements in J ULONG No 1 Yes No No
NEK Num. elements in K ULONG No 1 Yes No No
NEL Num. elements in L ULONG No 1 Yes No No
NEM Num. elements in M ULONG No 1 Yes No No
NEN Num. elements in N ULONG No 1 Yes No No
NEO Num. elements in O ULONG No 1 Yes No No
NEP Num. elements in P ULONG No 1 Yes No No
NEQ Num. elements in Q ULONG No 1 Yes No No
NER Num. elements in R ULONG No 1 Yes No No
NES Num. elements in S ULONG No 1 Yes No No
NET Num. elements in T ULONG No 1 Yes No No
NEU Num. elements in U ULONG No 1 Yes No No

1.5. EPICS Record Types 65

EPICS Documentation Sandbox

Output Link Fields

The output links through which the VALA . . . VALU field values are sent during record processing, provided the
subroutine returned 0.

Field Summary Type DCT Default Read Write CA PP
OUTA Output Link A OUTLINK Yes Yes Yes No

OUTB Output Link B OUTLINK Yes Yes Yes No

OUTC Output Link C OUTLINK Yes Yes Yes No

OUTD Output Link D OUTLINK Yes Yes Yes No

OUTE Output Link E OUTLINK Yes Yes Yes No

OUTF Output Link F OUTLINK Yes Yes Yes No

OUTG Output Link G OUTLINK Yes Yes Yes No

OUTH Output Link H OUTLINK Yes Yes Yes No

OUTI Output Link I OUTLINK Yes Yes Yes No

OUTJ Output Link J OUTLINK Yes Yes Yes No

OUTK Output Link K OUTLINK Yes Yes Yes No

OUTL Output Link L OUTLINK Yes Yes Yes No

OUTM Output Link M OUTLINK Yes Yes Yes No

OUTN Output Link N OUTLINK Yes Yes Yes No

OUTO Output Link O OUTLINK Yes Yes Yes No

OUTP Output Link P OUTLINK Yes Yes Yes No

OUTQ Output Link Q OUTLINK Yes Yes Yes No

OUTR Output Link R OUTLINK Yes Yes Yes No

OUTS Output Link S OUTLINK Yes Yes Yes No

OUTT Output Link T OUTLINK Yes Yes Yes No

OUTU Output Link U OUTLINK Yes Yes Yes No

66 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Output Value Fields

These fields hold scalar or array data generated by the subroutine which will be sent through the OUTA . . . OUTU
links during record processing.

Field Summary Type DCT Default Read Write CA PP
VALA Output value A Set by FTVA No Yes Yes No

VALB Output value B Set by FTVB No Yes Yes No

VALC Output value C Set by FTVC No Yes Yes No

VALD Output value D Set by FTVD No Yes Yes No

VALE Output value E Set by FTVE No Yes Yes No

VALF Output value F Set by FTVF No Yes Yes No

VALG Output value G Set by FTVG No Yes Yes No

VALH Output value H Set by FTVH No Yes Yes No

VALI Output value I Set by FTVI No Yes Yes No

VALJ Output value J Set by FTVJ No Yes Yes No

VALK Output value K Set by FTVK No Yes Yes No

VALL Output value L Set by FTVL No Yes Yes No

VALM Output value M Set by FTVM No Yes Yes No

VALN Output value N Set by FTVN No Yes Yes No

VALO Output value O Set by FTVO No Yes Yes No

VALP Output value P Set by FTVP No Yes Yes No

VALQ Output value Q Set by FTVQ No Yes Yes No

VALR Output value R Set by FTVR No Yes Yes No

VALS Output value S Set by FTVS No Yes Yes No

VALT Output value T Set by FTVT No Yes Yes No

VALU Output value U Set by FTVU No Yes Yes No

1.5. EPICS Record Types 67

EPICS Documentation Sandbox

Old Value Fields

The previous values of the output fields. These are used to determine when to post events if EFLG is set to ON CHANGE.

Field Summary Type DCT Default Read Write CA PP
OVLA Old Output A NOACCESS No No No No

OVLB Old Output B NOACCESS No No No No

OVLC Old Output C NOACCESS No No No No

OVLD Old Output D NOACCESS No No No No

OVLE Old Output E NOACCESS No No No No

OVLF Old Output F NOACCESS No No No No

OVLG Old Output G NOACCESS No No No No

OVLH Old Output H NOACCESS No No No No

OVLI Old Output I NOACCESS No No No No

OVLJ Old Output J NOACCESS No No No No

OVLK Old Output K NOACCESS No No No No

OVLL Old Output L NOACCESS No No No No

OVLM Old Output M NOACCESS No No No No

OVLN Old Output N NOACCESS No No No No

OVLO Old Output O NOACCESS No No No No

OVLP Old Output P NOACCESS No No No No

OVLQ Old Output Q NOACCESS No No No No

OVLR Old Output R NOACCESS No No No No

OVLS Old Output S NOACCESS No No No No

OVLT Old Output T NOACCESS No No No No

OVLU Old Output U NOACCESS No No No No

68 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Output Value Data Types

Field types of the output value fields. The choices can be found by following a link to the menuFtype definition.

Field Summary Type DCT Default Read Write CA PP
FTVA Type of VALA MENU menuFtype Yes DOUBLE Yes No No
FTVB Type of VALB MENU menuFtype Yes DOUBLE Yes No No
FTVC Type of VALC MENU menuFtype Yes DOUBLE Yes No No
FTVD Type of VALD MENU menuFtype Yes DOUBLE Yes No No
FTVE Type of VALE MENU menuFtype Yes DOUBLE Yes No No
FTVF Type of VALF MENU menuFtype Yes DOUBLE Yes No No
FTVG Type of VALG MENU menuFtype Yes DOUBLE Yes No No
FTVH Type of VALH MENU menuFtype Yes DOUBLE Yes No No
FTVI Type of VALI MENU menuFtype Yes DOUBLE Yes No No
FTVJ Type of VALJ MENU menuFtype Yes DOUBLE Yes No No
FTVK Type of VALK MENU menuFtype Yes DOUBLE Yes No No
FTVL Type of VALL MENU menuFtype Yes DOUBLE Yes No No
FTVM Type of VALM MENU menuFtype Yes DOUBLE Yes No No
FTVN Type of VALN MENU menuFtype Yes DOUBLE Yes No No
FTVO Type of VALO MENU menuFtype Yes DOUBLE Yes No No
FTVP Type of VALP MENU menuFtype Yes DOUBLE Yes No No
FTVQ Type of VALQ MENU menuFtype Yes DOUBLE Yes No No
FTVR Type of VALR MENU menuFtype Yes DOUBLE Yes No No
FTVS Type of VALS MENU menuFtype Yes DOUBLE Yes No No
FTVT Type of VALT MENU menuFtype Yes DOUBLE Yes No No
FTVU Type of VALU MENU menuFtype Yes DOUBLE Yes No No

Output Value Array Capacity

These fields specify how many array elements the output value fields may hold.

1.5. EPICS Record Types 69

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
NOVA Max. elements in VALA ULONG Yes 1 Yes No No
NOVB Max. elements in VALB ULONG Yes 1 Yes No No
NOVC Max. elements in VALC ULONG Yes 1 Yes No No
NOVD Max. elements in VALD ULONG Yes 1 Yes No No
NOVE Max. elements in VALE ULONG Yes 1 Yes No No
NOVF Max. elements in VALF ULONG Yes 1 Yes No No
NOVG Max. elements in VALG ULONG Yes 1 Yes No No
NOVH Max. elements in VAlH ULONG Yes 1 Yes No No
NOVI Max. elements in VALI ULONG Yes 1 Yes No No
NOVJ Max. elements in VALJ ULONG Yes 1 Yes No No
NOVK Max. elements in VALK ULONG Yes 1 Yes No No
NOVL Max. elements in VALL ULONG Yes 1 Yes No No
NOVM Max. elements in VALM ULONG Yes 1 Yes No No
NOVN Max. elements in VALN ULONG Yes 1 Yes No No
NOVO Max. elements in VALO ULONG Yes 1 Yes No No
NOVP Max. elements in VALP ULONG Yes 1 Yes No No
NOVQ Max. elements in VALQ ULONG Yes 1 Yes No No
NOVR Max. elements in VALR ULONG Yes 1 Yes No No
NOVS Max. elements in VALS ULONG Yes 1 Yes No No
NOVT Max. elements in VALT ULONG Yes 1 Yes No No
NOVU Max. elements in VALU ULONG Yes 1 Yes No No

Output Value Array Size

These fields specify how many array elements the output value fields currently contain.

Field Summary Type DCT Default Read Write CA PP
NEVA Num. elements in VALA ULONG No 1 Yes No No
NEVB Num. elements in VALB ULONG No 1 Yes No No
NEVC Num. elements in VALC ULONG No 1 Yes No No
NEVD Num. elements in VALD ULONG No 1 Yes No No
NEVE Num. elements in VALE ULONG No 1 Yes No No
NEVF Num. elements in VALF ULONG No 1 Yes No No
NEVG Num. elements in VALG ULONG No 1 Yes No No
NEVH Num. elements in VAlH ULONG No 1 Yes No No
NEVI Num. elements in VALI ULONG No 1 Yes No No
NEVJ Num. elements in VALJ ULONG No 1 Yes No No
NEVK Num. elements in VALK ULONG No 1 Yes No No
NEVL Num. elements in VALL ULONG No 1 Yes No No
NEVM Num. elements in VALM ULONG No 1 Yes No No
NEVN Num. elements in VALN ULONG No 1 Yes No No
NEVO Num. elements in VALO ULONG No 1 Yes No No
NEVP Num. elements in VALP ULONG No 1 Yes No No
NEVQ Num. elements in VALQ ULONG No 1 Yes No No
NEVR Num. elements in VALR ULONG No 1 Yes No No
NEVS Num. elements in VALS ULONG No 1 Yes No No
NEVT Num. elements in VALT ULONG No 1 Yes No No
NEVU Num. elements in VALU ULONG No 1 Yes No No

70 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Old Value Array Size

These fields specify how many array elements the old value fields currently contain.

Field Summary Type DCT Default Read Write CA PP
ONVA Num. elements in OVLA ULONG No 1 Yes No No
ONVB Num. elements in OVLB ULONG No 1 Yes No No
ONVC Num. elements in OVLC ULONG No 1 Yes No No
ONVD Num. elements in OVLD ULONG No 1 Yes No No
ONVE Num. elements in OVLE ULONG No 1 Yes No No
ONVF Num. elements in OVLF ULONG No 1 Yes No No
ONVG Num. elements in OVLG ULONG No 1 Yes No No
ONVH Num. elements in VAlH ULONG No 1 Yes No No
ONVI Num. elements in OVLI ULONG No 1 Yes No No
ONVJ Num. elements in OVLJ ULONG No 1 Yes No No
ONVK Num. elements in OVLK ULONG No 1 Yes No No
ONVL Num. elements in OVLL ULONG No 1 Yes No No
ONVM Num. elements in OVLM ULONG No 1 Yes No No
ONVN Num. elements in OVLN ULONG No 1 Yes No No
ONVO Num. elements in OVLO ULONG No 1 Yes No No
ONVP Num. elements in OVLP ULONG No 1 Yes No No
ONVQ Num. elements in OVLQ ULONG No 1 Yes No No
ONVR Num. elements in OVLR ULONG No 1 Yes No No
ONVS Num. elements in OVLS ULONG No 1 Yes No No
ONVT Num. elements in OVLT ULONG No 1 Yes No No
ONVU Num. elements in OVLU ULONG No 1 Yes No No

Record Support Routines

init_record

long (*init_record)(struct dbCommon *precord, int pass)

This routine is called twice at iocInit. On the first call it does the following:

• Calloc sufficient space to hold the number of input scalars and/or arrays defined by the settings of the fields
FTA-FTU and NOA-NOU. Initialize fields NE* to the values of the associated NO* field values.

• Calloc sufficient space to hold the number of output scalars and/or arrays defined by the settings of the fields
FTVA-FTVU and NOVA-NOVU. For the output fields, also calloc space to hold the previous value of a field.
This is required when the decision is made on whether or not to post events.

On the second call, it does the following:

• Initializes SUBL if it is a constant link.

• Initializes each constant input link.

• If the field INAM is set, look-up the address of the routine and call it.

• If the field LFLG is set to IGNORE and SNAM is defined, look up the address of the process routine.

1.5. EPICS Record Types 71

EPICS Documentation Sandbox

process

long (*process)(struct dbCommon *precord)

This routine implements the following algorithm:

• If PACT is FALSE, perform normal processing

• If PACT is TRUE, perform asynchronous-completion processing

Normal processing:

• Set PACT to TRUE.

• If the field LFLG is set to READ, get the subroutine name from the SUBL link. If the name is not NULL and it
is not the same as the previous subroutine name, look up the subroutine address. Set the old subroutine name,
ONAM, equal to the current name, SNAM.

• Fetch the values from the input links.

• Set PACT to FALSE

• If all input-link fetches succeeded, call the routine specified by SNAM.

• Set VAL equal to the return value from the routine specified by SNAM.

• If the SNAM routine set PACT to TRUE, then return. In this case, we presume the routine has arranged that
process will be called at some later time for asynchronous completion.

• Set PACT to TRUE.

• If VAL is zero, write the output values using the output links.

• Get the time of processing and put it into the timestamp field.

• If VAL has changed, post a change-of value and log event for this field. If EFLG is set to ALWAYS, post change-
of-value and log events for every output field. If EFLG is set to ON CHANGE, post change-of-value and log
events for every output field which has changed. In the case of an array, an event will be posted if any single
element of the array has changed. If EFLG is set to NEVER, no change-of-value or log events are posted for the
output fields.

• Process the record on the end of the forward link, if one exists.

• Set PACT to FALSE.

Asynchronous-completion processing:

• Call the routine specified by SNAM (again).

• Set VAL equal to the return value from the routine specified by SNAM.

• Set PACT to TRUE.

• If VAL is zero, write the output values using the output links.

• Get the time of processing and put it into the timestamp field.

• If VAL has changed, post a change-of value and log event for this field. If EFLG is set to ALWAYS, post change-
of-value and log events for every output field. If EFLG is set to ON CHANGE, post change-of-value and log
events for every output field which has changed. In the case of an array, an event will be posted if any single
element of the array has changed. If EFLG is set to NEVER, no change-of-value or log events are posted for the
output fields.

• Process the record on the end of the forward link, if one exists.

• Set PACT to FALSE.

72 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Use of the aSub Record

The aSub record has input-value fields (A-U) and output-value fields (VALA-VALU), which are completely indepen-
dent. The input-value fields have associated input links (INPA-INPU), and the output-value fields have associated output
links (OUTA-OUTU). Both inputs and outputs have type fields (FTA-FTU, FTVA-FTVU, which default to ‘DOUBLE’)
and number-of-element fields (NOA-NOU, NOVA-NOVU, which default to ‘1’). The output links OUTA-OUTU will
only be processed if the subroutine returns a zero (OK) status value.

Example database fragment

To use the A field to read an array from some other record, then, you would need a database fragment that might look
something like this:

record(aSub,"my_asub_record") {
field(SNAM,"my_asub_routine")
...
field(FTA, "LONG")
field(NOA, "100")
field(INPA, "myWaveform_1 NPP NMS")
...

}

If you wanted some other record to be able to write to the A field, then you would delete the input link above. If you
wanted the A field to hold a scalar value, you would either delete the NOA specification, or specify it as “1”.

Example subroutine fragment

The associated subroutine code that uses the A field might look like this:

static long my_asub_routine(aSubRecord *prec) {
long i, *a;
double sum=0;
...
a = (long *)prec->a;
for (i=0; i<prec->noa; i++) {

sum += a[i];
}
...
return 0; /* process output links */

}

Note that the subroutine code must always handle the value fields (A-U, VALA-VALU) as arrays, even if they contain
only a single element.

1.5. EPICS Record Types 73

EPICS Documentation Sandbox

Required export code

Aside from your own code, you must export and register your subroutines so the record can locate them. The simplest
way is as follows:

#include <registryFunction.h>
#include <epicsExport.h>

static long my_asub_routine(aSubRecord *prec) {
...

}
epicsRegisterFunction(my_asub_routine);

Required database-definition code

The .dbd file loaded by the ioc must then contain the following line, which tells the linker to include your object file in
the IOC binary:

function(my_asub_routine)

Device support, writing to hardware

The aSub record does not call any device support routines. If you want to write to hardware, you might use your output
fields and links to write to some other record that can write to hardware.

Dynamically Changing the User Routine called during Record Processing

The aSub record allows the user to dynamically change which routine is called when the record processes. This can be
done in two ways:

• The LFLG field can be set to READ so that the name of the routine is read from the SUBL link. Thus, whatever is
feeding this link can change the name of the routine before the aSub record is processed. In this case, the record
looks in the symbol table for the symbol name whenever the name of routine fetched from the link changes.

• The LFLG field can be set to IGNORE. In this case, the routine called during record processing is that specified
in the SNAM field. Under these conditions, the SNAM field can be changed by a Channel Access write to that
field. During development when trying several versions of the routine, it is not necessary to reboot the IOC and
reload the database. A new routine can be loaded with the vxWorks ld command, and Channel Access or the
dbpf command used to put the name of the routine into the record’s SNAM field. The record will look up the
symbol name in the symbol table whenever the SNAM field gets modified. The same routine name can even be
used as the vxWorks symbol lookup returns the latest version of the code to have been loaded.

74 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

1.5.4 Array Analog Input (aai)

The array analog input record type is used to read array data. The array data can contain any of the supported data
types. The record is in many ways similar to the waveform record. It allows, however, the device support to allocate
the array storage.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The array analog input record has the standard fields for specifying under what circumstances the record will be pro-
cessed. These fields are described in Scan Fields.

Read Parameters

These fields are configurable by the user to specify how and from where the record reads its data. The INP field
determines from where the array analog input gets its input. It can be a hardware address, a channel access or database
link, or a constant. Only in records that use soft device support can the INP field be a channel access link, a database
link, or a constant. Otherwise, the INP field must be a hardware address.

Fields related to waveform reading

The DTYP field must contain the name of the appropriate device support module. The values retrieved from the input
link are placed in an array referenced by VAL. (If the INP link is a constant, elements can be placed in the array via
dbPuts.) NELM specifies the number of elements that the array will hold, while FTVL specifies the data type of the
elements (follow the link in the table below for a list of the available choices).

Field Summary Type DCT Default Read Write CA PP
DTYP Device Type DEVICE Yes Yes Yes No

INP Input Specification INLINK Yes Yes Yes No

NELM Number of Elements ULONG Yes 1 Yes No No
FTVL Field Type of Value MENU menuFtype Yes Yes No No

Operator Display Parameters

These parameters are used to present meaningful data to the operator. They display the value and other parameters of
the waveform either textually or graphically.

1.5. EPICS Record Types 75

EPICS Documentation Sandbox

Fields related to Operator Display

EGU is a string of up to 16 characters describing the units that the array data measures. It is retrieved by the
get_units() record support routine.

The HOPR and LOPR fields set the upper and lower display limits for array elements referenced by the VAL field. Both
the get_graphic_double() and get_control_double() record support routines retrieve these fields.

The PREC field determines the floating point precision with which to display the array values. It is used whenever the
get_precision() record support routine is called.

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
EGU Engineering Units STRING [16] Yes Yes Yes No

HOPR High Operating Range DOUBLE Yes Yes Yes No

LOPR Low Operating Range DOUBLE Yes Yes Yes No

PREC Display Precision SHORT Yes Yes Yes No

NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Alarm Parameters

The array analog input record has the alarm parameters common to all record types.

Monitor Parameters

These parameters are used to determine when to send monitors placed on the VAL field. The APST and MPST fields
are a menu with choices Always and On Change. The default is Always, thus monitors will normally be sent every
time the record processes. Selecting On Change causes a 32-bit hash of the VAL field buffer to be calculated and
compared with the previous hash value every time the record processes; the monitor will only be sent if the hash is
different, indicating that the buffer has changed. Note that there is a small chance that two different value buffers might
result in the same hash value, so for critical systems Always may be a better choice, even though it re-sends duplicate
data.

Field Summary Type DCT Default Read Write CA PP
APST Post Archive Monitors MENU aaiPOST Yes Yes Yes No

MPST Post Value Monitors MENU aaiPOST Yes Yes Yes No

HASH Hash of OnChange data. ULONG No Yes Yes No

76 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Menu aaiPOST

These are the possible choices for the APST and MPST fields:

Index Identifier Choice String
0 aaiPOST_Always Always
1 aaiPOST_OnChange On Change

Run-time Parameters

These parameters are used by the run-time code for processing the array analog input record. They are not configured
using a configuration tool. Only the VAL field is modifiable at run-time.

VAL references the array where the array analog input record stores its data. The BPTR field holds the address of the
array.

The NORD field holds a counter of the number of elements that have been read into the array.

Field Summary Type DCT Default Read Write CA PP
VAL Value DOUBLE[NELM] No Yes Yes Yes

BPTR Buffer Pointer NOACCESS No No No No

NORD Number elements read ULONG No Yes No No

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML) is YES, the record is put in SIMS severity and the value is fetched through SIOL.
SSCN sets a different SCAN mechanism to use in simulation mode. SDLY sets a delay (in sec) that is used for asyn-
chronous simulation processing.

See Input Simulation Fields for more information on simulation mode and its fields.

Field Summary Type DCT Default Read Write CA PP
SIML Simulation Mode Link INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuYesNo No Yes Yes No

SIOL Simulation Input Link INLINK Yes Yes Yes No

SIMS Simulation Mode Severity MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

1.5. EPICS Record Types 77

EPICS Documentation Sandbox

Record Support

Record Support Routines

init_record

static long init_record(aaiRecord *prec, int pass)

If device support includes an init_record() routine it is called, but unlike most record types this occurs in pass 0,
which allows the device support to allocate the array buffer itself.

Since EPICS 7.0.5 the device support may return AAI_DEVINIT_PASS1 to request a second call to its init_record()
routine in pass 1.

Checks if device support allocated array space. If not, space for the array is allocated using NELM and FTVL. The
array address is stored in BPTR.

This routine initializes SIMM with the value of SIML if SIML type is CONSTANT link or creates a channel access
link if SIML type is PV_LINK. VAL is likewise initialized if SIOL is CONSTANT or PV_LINK.

This routine next checks to see that device support is available and a device support read routine is defined. If either
does not exist, an error message is issued and processing is terminated

process

static long process(aaiRecord *prec)

See “Record Processing” section below.

cvt_dbaddr

static long cvt_dbaddr(DBADDR *paddr)

This is called by dbNameToAddr. It makes the dbAddr structure refer to the actual buffer holding the result.

get_array_info

static long get_array_info(DBADDR *paddr, long *no_elements, long *offset)

Obtains values from the array referenced by VAL.

78 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

put_array_info

static long put_array_info(DBADDR *paddr, long nNew)

Writes values into the array referenced by VAL.

get_units

static long get_units(DBADDR *paddr, char *units)

Retrieves EGU.

get_prec

static long get_precision(DBADDR *paddr, long *precision)

Retrieves PREC if field is VAL field. Otherwise, calls recGblGetPrec().

get_graphic_double

static long get_graphic_double(DBADDR *paddr, struct dbr_grDouble *pgd)

Sets the upper display and lower display limits for a field. If the field is VAL the limits are set to HOPR and LOPR,
else if the field has upper and lower limits defined they will be used, else the upper and lower maximum values for the
field type will be used.

Sets the following values:

upper_disp_limit = HOPR
lower_disp_limit = LOPR

get_control_double

static long get_control_double(DBADDR *paddr, struct dbr_ctrlDouble *pcd)

Sets the upper control and the lower control limits for a field. If the field is VAL the limits are set to HOPR and LOPR,
else if the field has upper and lower limits defined they will be used, else the upper and lower maximum values for the
field type will be used.

Sets the following values

upper_ctrl_limit = HOPR
lower_ctrl_limit = LOPR

1.5. EPICS Record Types 79

EPICS Documentation Sandbox

Record Processing

Routine process implements the following algorithm:

1. Check to see that the appropriate device support module exists. If it doesn’t, an error message is issued and
processing is terminated with the PACT field still set to TRUE. This ensures that processes will no longer be
called for this record. Thus error storms will not occur.

2. Call device support read routine read_aai().

3. If PACT has been changed to TRUE, the device support read routine has started but has not completed writing
the new value. In this case, the processing routine merely returns, leaving PACT TRUE.

4. Check to see if monitors should be invoked.

• Alarm monitors are invoked if the alarm status or severity has changed.

• Archive and value change monitors are invoked if APST or MPST are Always or if the result of the hash
calculation is different.

• NSEV and NSTA are reset to 0.

5. Scan forward link if necessary, set PACT FALSE, and return.

Device Support

Fields Of Interest To Device Support

Each array analog input record record must have an associated set of device support routines. The primary responsibility
of the device support routines is to obtain a new array value whenever read_aai() is called. The device support
routines are primarily interested in the following fields:

Field Summary Type DCT Default Read Write CA PP
PACT Record active UCHAR No Yes No No

DPVT Device Private NOACCESS No No No No

NSEV New Alarm Severity MENU menuAlarmSevr No Yes No No

NSTA New Alarm Status MENU menuAlarmStat No Yes No No

INP Input Specification INLINK Yes Yes Yes No

NELM Number of Elements ULONG Yes 1 Yes No No
FTVL Field Type of Value MENU menuFtype Yes Yes No No

BPTR Buffer Pointer NOACCESS No No No No

NORD Number elements read ULONG No Yes No No

80 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Device Support Routines

Device support consists of the following routines:

report

long report(int level)

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

init

long init(int after)

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

init_record

long init_record(dbCommon *precord)

This routine is optional. If provided, it is called by the record support’s init_record() routine in pass 0. The device
support may allocate memory for the VAL field’s array (enough space for NELM elements of type FTVA) from its own
memory pool if desired, and store the pointer to this buffer in the BPTR field. The record will use calloc() for this
memory allocation if BPTR has not been set by this routine. The routine must return 0 for success, -1 or a error status
on failure.

Since EPICS 7.0.5 if this routine returns AAI_DEVINIT_PASS1 in pass 0, it will be called again in pass 1 with the
PACT field set to AAI_DEVINIT_PASS1. In pass 0 the PACT field is set to zero (FALSE).

get_ioint_info

long get_ioint_info(int cmd, dbCommon *precord, IOSCANPVT *ppvt)

This routine is called by the ioEventScan system each time the record is added or deleted from an I/O event scan list.
cmd has the value (0,1) if the record is being (added to, deleted from) an I/O event list. It must be provided for any
device type that can use the ioEvent scanner.

1.5. EPICS Record Types 81

EPICS Documentation Sandbox

read_aai

long read_aai(dbCommon *precord)

This routine should provide a new input value. It returns the following values:

• 0: Success.

• Other: Error.

Device Support For Soft Records

The Soft Channel device support is provided to read values from other records via the INP link, or to hold array
values that are written into it.

If INP is a constant link the array value gets loaded from the link constant by the record_init() routine, which also
sets NORD. The read_aai() routine does nothing in this case.

If INP is a database or channel access link, the read_aai() routine gets a new array value from the link and sets
NORD.

1.5.5 Array Analog Output (aao)

The array analog output record type is used to write array data. The array data can contain any of the supported data
types. The record is in many ways similar to the waveform record but outputs arrays instead of reading them. It also
allows the device support to allocate the array storage.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The array analog output record has the standard fields for specifying under what circumstances the record will be
processed. These fields are described in Scan Fields.

Field Summary Type DCT Default Read Write CA PP
SCAN Scan Mechanism MENU menuScan Yes Yes Yes No

PHAS Scan Phase SHORT Yes Yes Yes No

EVNT Event Name STRING [40] Yes Yes Yes No

PRIO Scheduling Priority MENU menuPriority Yes Yes Yes No

PINI Process at iocInit MENU menuPini Yes Yes Yes No

82 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Write Parameters

These fields are configurable by the user to specify how and where to the record writes its data. The OUT field
determines where the array analog output writes its output. It can be a hardware address, a channel access or database
link, or a constant. Only in records that use soft device support can the OUT field be a channel access link, a database
link, or a constant. Otherwise, the OUT field must be a hardware address. See Address Specification for information
on the format of hardware addresses and database links.

Fields related to array writing

The DTYP field must contain the name of the appropriate device support module. The values in the array referenced
by are written to the location specified in the OUT field. (If the OUT link is a constant, no data are written.) NELM
specifies the maximum number of elements that the array can hold, while FTVL specifies the data type of the elements
(follow the link in the table below for a list of the available choices).

Field Summary Type DCT Default Read Write CA PP
DTYP Device Type DEVICE Yes Yes Yes No

OUT Output Specification OUTLINK Yes Yes Yes No

NELM Number of Elements ULONG Yes 1 Yes No No
FTVL Field Type of Value MENU menuFtype Yes Yes No No

Operator Display Parameters

These parameters are used to present meaningful data to the operator. They display the value and other parameters of
the waveform either textually or graphically.

Fields related to Operator Display

EGU is a string of up to 16 characters describing the units that the array data measures. It is retrieved by the get_units
record support routine.

The HOPR and LOPR fields set the upper and lower display limits for array elements referenced by the VAL field. Both
the get_graphic_double and get_control_double record support routines retrieve these fields.

The PREC field determines the floating point precision with which to display the array values. It is used whenever the
get_precision record support routine is called.

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

1.5. EPICS Record Types 83

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#address-specification

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
EGU Engineering Units STRING [16] Yes Yes Yes No

HOPR High Operating Range DOUBLE Yes Yes Yes No

LOPR Low Operating Range DOUBLE Yes Yes Yes No

PREC Display Precision SHORT Yes Yes Yes No

NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Alarm Parameters

The array analog output record has the alarm parameters common to all record types.

Monitor Parameters

These parameters are used to determine when to send monitors placed on the VAL field. The APST and MPST fields
are a menu with choices “Always” and “On Change”. The default is “Always”, thus monitors will normally be sent
every time the record processes. Selecting “On Change” causes a 32-bit hash of the VAL field buffer to be calculated
and compared with the previous hash value every time the record processes; the monitor will only be sent if the hash is
different, indicating that the buffer has changed. Note that there is a small chance that two different value buffers might
result in the same hash value, so for critical systems “Always” may be a better choice, even though it re-sends duplicate
data.

Record fields related to Monitor Parameters

Field Summary Type DCT Default Read Write CA PP
APST Post Archive Monitors MENU aaoPOST Yes Yes Yes No

MPST Post Value Monitors MENU aaoPOST Yes Yes Yes No

HASH Hash of OnChange data. ULONG No Yes Yes No

Menu aaoPOST

These are the choices available for the APST and MPST fields

Index Identifier Choice String
0 aaoPOST_Always Always
1 aaoPOST_OnChange On Change

84 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Run-time Parameters

These parameters are used by the run-time code for processing the array analog output record. They are not configured
using a configuration tool. Only the VAL field is modifiable at run-time.

VAL references the array where the array analog output record stores its data. The BPTR field holds the address of the
array.

The NORD field holds a counter of the number of elements that have been written to the output,

Field Summary Type DCT Default Read Write CA PP
VAL Value DOUBLE[] No Yes Yes Yes

BPTR Buffer Pointer NOACCESS No No No No

NORD Number elements read ULONG No Yes No No

OMSL Output Mode Select MENU menuOmsl Yes Yes Yes No

DOL Desired Output Link INLINK Yes Yes Yes No

The following steps are performed in order during record processing.

Fetch Value

The OMSL menu field is used to determine whether the DOL link field should be used during processing or not:

• If OMSL is supervisory the DOL field are not used. The new output value is taken from the VAL field, which
may have been set from elsewhere.

• If OMSL is closed_loop the DOL link field is read to obtain a value.

Note: The OMSL and DOL fields were added to the aaoRecord in Base 7.0.7.

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML) is YES, the record is put in SIMS severity and the value is written through SIOL.
SSCN sets a different SCAN mechanism to use in simulation mode. SDLY sets a delay (in sec) that is used for asyn-
chronous simulation processing.

See Output Simulation Fields for more information on simulation mode and its fields.

1.5. EPICS Record Types 85

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
SIML Simulation Mode Link INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuYesNo No Yes Yes No

SIOL Simulation Output Link OUTLINK Yes Yes Yes No

SIMS Simulation Mode Severity MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

Record Support

Record Support Routines

init_record

static long init_record(aaoRecord *prec, int pass)

If device support includes init_record(), it is called.

Checks if device support allocated array space. If not, space for the array is allocated using NELM and FTVL. The
array address is stored in the record.

This routine initializes SIMM with the value of SIML if SIML type is CONSTANT link or creates a channel access
link if SIML type is PV_LINK. VAL is likewise initialized if SIOL is CONSTANT or PV_LINK.

This routine next checks to see that device support is available and a device support write routine is defined. If either
does not exist, an error message is issued and processing is terminated

process

static long process(aaoRecord *prec)

See “Record Processing” section below.

cvt_dbaddr

static long cvt_dbaddr(DBADDR *paddr)

This is called by dbNameToAddr. It makes the dbAddr structure refer to the actual buffer holding the result.

86 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

get_array_info

static long get_array_info(DBADDR *paddr, long *no_elements, long *offset)

Obtains values from the array referenced by VAL.

put_array_info

static long put_array_info(DBADDR *paddr, long nNew)

Writes values into the array referenced by VAL.

get_units

static long get_units(DBADDR *paddr, char *units)

Retrieves EGU.

get_prec

static long get_precision(DBADDR *paddr, long *precision)

Retrieves PREC if field is VAL field. Otherwise, calls recGblGetPrec().

get_graphic_double

static long get_graphic_double(DBADDR *paddr, struct dbr_grDouble *pgd)

Sets the upper display and lower display limits for a field. If the field is VAL the limits are set to HOPR and LOPR,
else if the field has upper and lower limits defined they will be used, else the upper and lower maximum values for the
field type will be used.

Sets the following values:

upper_disp_limit = HOPR
lower_disp_limit = LOPR

get_control_double

static long get_control_double(DBADDR *paddr, struct dbr_ctrlDouble *pcd)

Sets the upper control and the lower control limits for a field. If the field is VAL the limits are set to HOPR and LOPR,
else if the field has upper and lower limits defined they will be used, else the upper and lower maximum values for the
field type will be used.

Sets the following values

1.5. EPICS Record Types 87

EPICS Documentation Sandbox

upper_ctrl_limit = HOPR
lower_ctrl_limit = LOPR

Record Processing

Routine process implements the following algorithm:

1. Check to see that the appropriate device support module exists. If it doesn’t, an error message is issued and
processing is terminated with the PACT field still set to TRUE. This ensures that processes will no longer be
called for this record. Thus error storms will not occur.

2. Call device support write routine write_aao.

3. If PACT has been changed to TRUE, the device support read routine has started but has not completed writing
the new value. In this case, the processing routine merely returns, leaving PACT TRUE.

4. Check to see if monitors should be invoked.

• Alarm monitors are invoked if the alarm status or severity has changed.

• Archive and value change monitors are invoked if APST or MPST are Always or if the result of the hash
calculation is different.

• NSEV and NSTA are reset to 0.

5. Scan forward link if necessary, set PACT FALSE, and return.

Device Support

Fields Of Interest To Device Support

Each array analog output record record must have an associated set of device support routines. The primary respon-
sibility of the device support routines is to write the array data value whenever write_aao() is called. The device
support routines are primarily interested in the following fields:

Field Summary Type DCT Default Read Write CA PP
PACT Record active UCHAR No Yes No No

DPVT Device Private NOACCESS No No No No

NSEV New Alarm Severity MENU menuAlarmSevr No Yes No No

NSTA New Alarm Status MENU menuAlarmStat No Yes No No

OUT Output Specification OUTLINK Yes Yes Yes No

NELM Number of Elements ULONG Yes 1 Yes No No
FTVL Field Type of Value MENU menuFtype Yes Yes No No

BPTR Buffer Pointer NOACCESS No No No No

NORD Number elements read ULONG No Yes No No

88 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Device Support Routines

Device support consists of the following routines:

report

long report(int level)

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

init

long init(int after)

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

init_record

long init_record(dbCommon *precord)

This routine is optional. If provided, it is called by the record support init_record() routine.

get_ioint_info

long get_ioint_info(int cmd, dbCommon *precord, IOSCANPVT *ppvt)

This routine is called by the ioEventScan system each time the record is added or deleted from an I/O event scan list.
cmd has the value (0,1) if the record is being (added to, deleted from) an I/O event list. It must be provided for any
device type that can use the ioEvent scanner.

write_aao

long write_aao(dbCommon *precord)

This routine must write the array data to output. It returns the following values:

• 0: Success.

• Other: Error.

1.5. EPICS Record Types 89

EPICS Documentation Sandbox

Device Support For Soft Records

The Soft Channel device support module is provided to write values to other records and store them in arrays. If
OUT is a constant link, then write_aao() does nothing. In this case, the record can be used to hold arrays written via
dbPuts. If OUT is a database or channel access link, the array value is written to the link. NORD is set to the number
of items in the array.

If the OUT link type is constant, then NORD is set to zero.

1.5.6 Binary Input Record (bi)

This record type is normally used to obtain a binary value of 0 or 1. Most device support modules obtain values from
hardware and place the value in RVAL. For these devices, record processing sets VAL = (0,1) if RVAL is (0, not 0).
Device support modules may optionally read a value directly from VAL.

Soft device modules are provided to obtain input via database or channel access links via dbPutField or dbPutLink
requests. Two soft device support modules are provided: Soft Channel and Raw Soft Channel. The first allows
VAL to be an arbitrary unsigned short integer. The second reads the value into RVAL just like normal hardware
modules.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The binary input record has the standard fields for specifying under what circumstances the record will be processed.
These fields are described in Scan Fields.

Field Summary Type DCT Default Read Write CA PP
SCAN Scan Mechanism MENU menuScan Yes Yes Yes No

PHAS Scan Phase SHORT Yes Yes Yes No

EVNT Event Name STRING [40] Yes Yes Yes No

PRIO Scheduling Priority MENU menuPriority Yes Yes Yes No

PINI Process at iocInit MENU menuPini Yes Yes Yes No

Read and Convert Parameters

The read and convert fields determine where the binary input gets its input from and how to convert the raw signal
to engineering units. The INP field contains the address from where device support retrieves the value. If the binary
input record gets its value from hardware, the address of the card must be entered in the INP field, and the name of the
device support module must be entered in the DTYP field. See Address Specification for information on the format of
the hardware address.

For records that specify Soft Channel or Raw Soft Channel device support routines, the INP field can be a channel
or a database link, or a constant. If a constant, VAL can be changed directly by dbPuts. See Address Specification for

90 Chapter 1. EPICS Record Reference Manual

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#address-specification
https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#address-specification

EPICS Documentation Sandbox

information on the format of database and channel access addresses. Also, see “Device Support for Soft Records” in
this chapter for information on soft device support.

If the record gets its values from hardware or uses the Raw Soft Channel device support, the device support routines
place the value in the RVAL field which is then converted using the process described in the next section.

Field Summary Type DCT Default Read Write CA PP
INP Input Specification INLINK Yes Yes Yes No

DTYP Device Type DEVICE Yes Yes Yes No

ZNAM Zero Name STRING [26] Yes Yes Yes Yes

ONAM One Name STRING [26] Yes Yes Yes Yes

RVAL Raw Value ULONG No Yes Yes Yes

VAL Current Value ENUM Yes Yes Yes Yes

Conversion Fields

The VAL field is set equal to (0,1) if the RVAL field is (0, not 0), unless the device support module reads a value directly
into VAL or the Soft Channel device support is used. The value can also be fetched as one of the strings specified in
the ZNAM or ONAM fields. The ZNAM field has a string that corresponds to the 0 state, so when the value is fetched
as this string, put_enum_str() will return a 0. The ONAM field hold the string that corresponds to the 1 state, so
when the value is fetched as this string, put_enum_str() returns a 1.

Field Summary Type DCT Default Read Write CA PP
ZNAM Zero Name STRING [26] Yes Yes Yes Yes

ONAM One Name STRING [26] Yes Yes Yes Yes

Operator Display Parameters

These parameters are used to present meaningful data to the operator. The get_enum_str() record support routine
can retrieve the state string corresponding to the VAL’s state. If the value is 1, get_enum_str() will return the string
in the ONAM field; and if 0, get_enum_str() will return the ZNAM string.

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
ZNAM Zero Name STRING [26] Yes Yes Yes Yes

ONAM One Name STRING [26] Yes Yes Yes Yes

NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

1.5. EPICS Record Types 91

EPICS Documentation Sandbox

Alarm Parameters

These parameters are used to determine if the binary input is in alarm condition and to determine the severity of that
condition. The possible alarm conditions for binary inputs are the SCAN, READ state alarms, and the change of state
alarm. The SCAN and READ alarms are called by the device supprt routines.

The user can choose the severity of each state in the ZSV and OSV fields. The possible values for these fields are
NO_ALARM, MINOR, and MAJOR. The ZSV field holds the severity for the zero state; OSV, for the one state. COSV
causes an alarm whenever the state changes between 0 and 1 and the severity is configured as MINOR or MAJOR.

See Alarm Specification for a complete explanation of record alarms and of the standard fields. Alarm Fields lists other
fields related to alarms that are common to all record types.

Field Summary Type DCT Default Read Write CA PP
ZSV Zero Error Severity MENU menuAlarmSevr Yes Yes Yes Yes

OSV One Error Severity MENU menuAlarmSevr Yes Yes Yes Yes

COSV Change of State Svr MENU menuAlarmSevr Yes Yes Yes Yes

Run-time Parameters

These parameters are used by the run-time code for processing the binary input. They are not configured using a
database configuration tool.

ORAW is used to determine if monitors should be triggered for RVAL at the same time they are triggered for VAL.

MASK is given a value by ithe device support routines. This value is used to manipulate the record’s value, but is only
the concern of the hardware device support routines.

The LALM fields holds the value of the last occurence of the change of state alarm. It is used to implement the change
of state alarm, and thus only has meaning if COSV is MAJOR or MINOR.

The MSLT field is used by the process() record support routine to determine if archive and value change monitors
are invoked. They are if MSLT is not equal to VAL.

Field Summary Type DCT Default Read Write CA PP
ORAW prev Raw Value ULONG No Yes No No

MASK Hardware Mask ULONG No Yes No No

LALM Last Value Alarmed USHORT No Yes No No

MLST Last Value Monitored USHORT No Yes No No

92 Chapter 1. EPICS Record Reference Manual

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#alarm-specification

EPICS Documentation Sandbox

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML) is YES or RAW, the record is put in SIMS severity and the value is fetched through
SIOL (buffered in SVAL). If SIMM is YES, SVAL is written to VAL without conversion, if SIMM is RAW, SVAL is
trancated to RVAL and converted. SSCN sets a different SCAN mechanism to use in simulation mode. SDLY sets a
delay (in sec) that is used for asynchronous simulation processing.

See Input Simulation Fields for more information on simulation mode and its fields.

Field Summary Type DCT Default Read Write CA PP
SIML Simulation Mode Link INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuSimm No Yes Yes No

SIOL Simulation Input Link INLINK Yes Yes Yes No

SVAL Simulation Value ULONG No Yes Yes No

SIMS Simulation Mode Severity MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

Record Support

Record Support Routines

long init_record(struct dbCommon *precord, int pass);

This routine initializes SIMM with the value of SIML if SIML type is a CONSTANT link or creates a channel access
link if SIML type is PV_LINK. SVAL is likewise initialized if SIOL is a CONSTANT or PV_LINK.

This routine next checks to see that device support is available and a device support routine is defined. If neither exist,
an error is issued and processing is terminated.

If device support includes init_record(), it is called.

long process(struct dbCommon *precord);

See “Record Processing” below.

long get_enum_str(const struct dbAddr *paddr, char *pbuffer);

Retrieves ASCII string corresponding to VAL.

long get_enum_strs(const struct dbAddr *paddr, struct dbr_enumStrs *p);

Retrieves ASCII strings for ZNAM and ONAM.

long put_enum_str(const struct dbAddr *paddr, const char *pbuffer);

Check if string matches ZNAM or ONAM, and if it does, sets VAL.

1.5. EPICS Record Types 93

EPICS Documentation Sandbox

Record Processing

Routine process implements the following algorithm:

• 1.

Check to see that the appropriate device support module exists. If it doesn’t, an error message is issued and processing
is terminated with the PACT field still set to TRUE. This ensures that processes will no longer be called for this record.
Thus error storms will not occur.

• 2.

readValue() is called. See “Input Records” for details.

• 3.

If PACT has been changed to TRUE, the device support read routine has started but has not completed reading a new
input value. In this case, the processing routine merely returns, leaving PACT TRUE.

• 4.

Convert.

• status = read_bi

• PACT = TRUE

• recGblGetTimeStamp() is called.

• if status is 0, then set VAL=(0,1) if RVAL is (0, not 0) and UDF = False.

• if status is 2, set status = 0

• 5.

Check alarms: This routine checks to see if the new VAL causes the alarm status and severity to change. If so, NSEV,
NSTA and LALM are set. Note that if VAL is greater than 1, no checking is performed.

• 6.

Check if monitors should be invoked:

• Alarm monitors are invoked if the alarm status or severity has changed.

• Archive and value change monitors are invoked if MSLT is not equal to VAL.

• Monitors for RVAL are checked whenever other monitors are invoked.

• NSEV and NSTA are reset to 0.

• 7.

Scan forward link if necessary, set PACT FALSE, and return.

Device Support

Fields of Interest to Device Support

Each binary input record must have an associated set of device support routines. The primary resposibility of the device
support routines is to obtain a new raw input value whenever read_bi() is called. The device support routines are
primarily interested in the following fields:

94 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
PACT Record active UCHAR No Yes No No

DPVT Device Private NOACCESS No No No No

UDF Undefined UCHAR Yes 1 Yes Yes Yes
NSEV New Alarm Severity MENU menuAlarmSevr No Yes No No

NSTA New Alarm Status MENU menuAlarmStat No Yes No No

VAL Current Value ENUM Yes Yes Yes Yes

INP Input Specification INLINK Yes Yes Yes No

RVAL Raw Value ULONG No Yes Yes Yes

MASK Hardware Mask ULONG No Yes No No

Device Support routines

Device support consists of the following routines:

long report(int level);

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

long init(int after);

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

long init_record(struct dbCommon *precord);

This routine is optional. If provided, it is called by the record support init_record() routine.

long get_ioint_info(int cmd, struct dbCommon *precord, IOSCANPVT *ppvt);

This routine is called by the ioEventScan system each time the record is added or deleted from an I/O event scan list.
cmd has the value (0,1) if the record is being (added to, deleted from) and I/O event list. It must be provided for any
device type that can use the ioEvent scanner.

long read_bi(struct dbCommon *precord);

This routine must provide a new input value. It returns the following values:

• 0: Success. A new raw value is placed in RVAL. The record support module forces VAL to be (0,1) if RVAL is
(0, not 0).

• 2: Success, but don’t modify VAL.

1.5. EPICS Record Types 95

EPICS Documentation Sandbox

• Other: Error.

Device Support for Soft Records

Two soft device support modules, Soft Channel and Raw Soft Channel, are provided for input records not related to
actual hardware devices. The INP link type must be either CONSTANT, DB_LINK, or CA_LINK.

Soft Channel

read_bi() always returns a value of 2, which means that no conversion is performed.

If the INP link type is CONSTANT, then the constant value is stored in VAL by init_record(), and the UDF is set
to FALSE. VAL can be changed via dbPut() requests. If the INP link type is PV_LINK, the dbCaAddInlink() is
called by init_record().

read_bi() calls dbGetLinkValue to read the current value of VAL. See “Soft Input” for details.

If the return status of dbGetLinkValue() is zero, then read_bi() sets UDF to FALSE. The status of
dbGetLinkValue() is returned.

Raw Soft Channel

This module is like the previous except that values are read into RVAL.

read_bi() returns a value of 0. Thus the record processing routine will force VAL to be 0 or 1.

1.5.7 Binary Output Record (bo)

The normal use for this record type is to store a simple bit (0 or 1) value to be sent to a Digital Output module. It can
also be used to write binary values into other records via database or channel access links. This record can implement
both latched and momentary binary outputs depending on how the HIGH field is configured.

Scan Parameters

The binary output record has the standard fields for specifying under what circumstances the record will be processed.
These fields are described in Scan Fields.

Field Summary Type DCT Default Read Write CA PP
SCAN Scan Mechanism MENU menuScan Yes Yes Yes No

PHAS Scan Phase SHORT Yes Yes Yes No

EVNT Event Name STRING [40] Yes Yes Yes No

PRIO Scheduling Priority MENU menuPriority Yes Yes Yes No

PINI Process at iocInit MENU menuPini Yes Yes Yes No

96 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Desired Output Parameters

The binary output record must specify where its desired output originates. The desired output needs to be in engineering
units.

The first field that determines where the desired output originates is the output mode select (OMSL) field, which can
have two possible values: losed_loop or supervisory. If supervisory is specified, the value in the VAL field
can be set externally via dbPuts at run-time. If closed_loop is specified, the VAL field’s value is obtained from the
address specified in the Desired Output Link (DOL) field which can be a database link or a channel access link, but not
a constant. To achieve continuous control, a database link to a control algorithm record should be entered in the DOL
field.

See Address Specification for information on hardware addresses and links.

Field Summary Type DCT Default Read Write CA PP
DOL Desired Output Link INLINK Yes Yes Yes No

OMSL Output Mode Select MENU menuOmsl Yes Yes Yes No

Convert and Write Parameters

These parameters are used to determine where the binary output writes to and how to convert the engineering units to a
raw signal. After VAL is set and forced to be either 1 or 0, as the result of either a dbPut or a new value being retrieved
from the link in the DOL field, then what happens next depends on which device support routine is used and how the
HIGH field is configured.

If the Soft Channel device support routine is specified, then the device support routine writes the VAL field’s value
to the address specified in the OUT field. Otherwise, RVAL is the value written by the device support routines after
being converted.

If VAL is equal to 0, then the record processing routine sets RVAL equal to zero. When VAL is not equal to 0, then
RVAL is set equal to the value contained in the MASK field. (MASK is set by the device support routines and is of
no concern to the user.) Also, when VAL is not 0 and after RVAL is set equal to MASK, the record processing routine
checks to see if the HIGH field is greater than 0. If it is, then the routine will process the record again with VAL set
to 0 after the number of seconds specified by HIGH. Thus, HIGH implements a momentary output which changes the
state of the device back to 0 after N number of seconds.

Field Summary Type DCT Default Read Write CA PP
DTYP Device Type DEVICE Yes Yes Yes No

OUT Output Specification OUTLINK Yes Yes Yes No

VAL Current Value ENUM Yes Yes Yes Yes

RVAL Raw Value ULONG No Yes Yes Yes

HIGH Seconds to Hold High DOUBLE Yes Yes Yes No

ZNAM Zero Name STRING [26] Yes Yes Yes Yes

ONAM One Name STRING [26] Yes Yes Yes Yes

1.5. EPICS Record Types 97

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#address-specification

EPICS Documentation Sandbox

Conversion Parameters

The ZNAM field has the string that corresponds to the 0 state, and the ONAM field holds the string that corresponds
to the 1 state. These fields, other than being used to tell the operator what each state represents, are used to perform
conversions if the value fetched by DOL is a string. If it is, VAL is set to the state which corresponds to that string. For
instance, if the value fetched is the string “Off” and the ZNAM string is “Off,” then VAL is set to 0.

After VAL is set, if VAL is equal to 0, then the record processing routine sets RVAL equal to zero. When VAL is
not equal to 0, then RVAL is set equal to the value contained in the MASK field. (Mask is set by the device support
routines and is of no concern to the user.) Also when VAL is equal to 1 and after RVAL is set equal to MASK, the
record processing routine checks to see if the HIGH field is greater than 0. If it is, then the routine processes the record
again with VAL=0 after the number of seconds specified by HIGH. Thus, HIGH implements a latched output which
changes the state of the device or link to 1, then changes it back to 0 after N number of seconds.

Field Summary Type DCT Default Read Write CA PP
ZNAM Zero Name STRING [26] Yes Yes Yes Yes

ONAM One Name STRING [26] Yes Yes Yes Yes

HIGH Seconds to Hold High DOUBLE Yes Yes Yes No

Output Specification

The OUT field specifies where the binary output record writes its output. It must specify the address of an I/O card if
the record sends its output to hardware, and the DTYP field must contain the corresponding device support module.
Be aware that the address format differs according to the I/O bus used. See Address Specification for information on
the format of hardware addresses.

Otherwise, if the record is configured to use the soft device support modules, then it can be either a database link,
a channel access link, or a constant. Be aware that nothing will be written when OUT is a constant. See Address
Specification for information on the format of the database and channel access addresses. Also, see “Device Support
For Soft Records” in this chapter for more on output to other records.

Operator Display Parameters

These parameters are used to present meaningful data to the operator, The get_enum_str() record support routine
can retrieve the state string corresponding to the VAL’s state. So, if the value is 1, get_enum_str() will return the
string in the ONAM field: and if 0, get_enum_str() will return the ZNAM string.

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
ZNAM Zero Name STRING [26] Yes Yes Yes Yes

ONAM One Name STRING [26] Yes Yes Yes Yes

NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

98 Chapter 1. EPICS Record Reference Manual

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#address-specification
https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#address-specification
https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#address-specification

EPICS Documentation Sandbox

Alarm Parameters

These parameters are used to determine the binary output’s alarm condition and to determine the severity of that
condition. The possible alarm conditions for binary outputs are the SCAN, READ, INVALID and state alarms. The
user can configure the state alarm conditions using these fields.

The possible values for these fields are NO_ALARM, MINOR, and MAJOR. The ZSV holds the severity for the zero state;
OSV for the one state. COSV is used to cause an alarm whenever the state changes between states (0-1, 1-0) and its
severity is configured as MINOR or MAJOR.

See Invalid Output Action Fields for more information on the IVOA and IVOV fields. Alarm Fields lists other fields
related to alarms that are common to all record types.

Field Summary Type DCT Default Read Write CA PP
ZSV Zero Error Severity MENU menuAlarmSevr Yes Yes Yes Yes

OSV One Error Severity MENU menuAlarmSevr Yes Yes Yes Yes

COSV Change of State Sevr MENU menuAlarmSevr Yes Yes Yes Yes

IVOA INVALID outpt action MENU menuIvoa Yes Yes Yes No

IVOV INVALID output value USHORT Yes Yes Yes No

Run-Time Parameters

These parameters are used by the run-time code for processiong the binary output. They are not configurable using a
configuration tool. They represent the current state of the binary output.

ORAW is used to determine if monitors should be triggered for RVAL at the same time they are triggered for VAL.

MASK is given a value by the device support routines and should not concern the user.

The RBV field is also set by device support. It is the actual read back value obtained from the hardware itself or from
the associated device driver.

The ORBV field is used to decide if monitors should be triggered for RBV at the same time monitors are triggered for
changes in VAL.

The LALM field holds the value of the last occurrence of the change of state alarm. It is used to implement the change
of state alarm, and thus only has meaning if COSV is MINOR or MAJOR.

The MLST is used by the process() record support routine to determine if archive and value change monitors are
invoked. They are if MLST is not equal to VAL.

The WPDT field is a private field for honoring seconds to hold HIGH.

1.5. EPICS Record Types 99

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
ORAW prev Raw Value ULONG No Yes No No

MASK Hardware Mask ULONG No Yes No No

RBV Readback Value ULONG No Yes No No

ORBV Prev Readback Value ULONG No Yes No No

LALM Last Value Alarmed USHORT No Yes No No

MLST Last Value Monitored USHORT No Yes No No

RPVT Record Private NOACCESS No No No No

WDPT Watch Dog Timer ID NOACCESS No No No No

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML, if populated) is YES, the record is put in SIMS severity and the unconverted value
is written through SIOL. If SIMM is RAW, the value is converted and RVAL is written. SSCN sets a different SCAN
mechanism to use in simulation mode. SDLY sets a delay (in sec) that is used for asynchronous simulation processing.

See Output Simulation Fields for more information on simulation mode and its fields.

Field Summary Type DCT Default Read Write CA PP
SIML Simulation Mode Link INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuSimm No Yes Yes No

SIOL Simulation Output Link OUTLINK Yes Yes Yes No

SIMS Simulation Mode Severity MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

Record Support

Record Support Routines

init_record

This routine initializes SIMM if SIML is a constant or creates a channel access link if SIML is PV_LINK. If SIOL is
a PV_LINK a channel access link is created.

This routine next checks to see that device support is available. The routine next checks to see if the device support
write routine is defined.

100 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

If either device support or the device support write routine does not exist, and error message is issued and processing
is terminated.

If DOL is a constant, then VAL is initialized to 1 if its value is nonzero or initialzed to 0 if DOL is zero, and UDF is
set to FALSE.

If device support includes init_record(), it is called. VAL is set using RVAL, and UDF is set to FALSE.

process

See next section.

get_enum_str

Retrieves ASCII string corresponding to VAL.

get_enum_strs

Retrieves ASCII strings for ZNAM and ONAM.

put_enum_str

Checks if string matches ZNAM or ONAM, and if it does, sets VAL.

Record Processing

Routine process implements the following algorithm:

• 1.

Check to see that the appropriate device support module exists. If it doesn’t, an error message is issued and processing
is terminated with the PACT field still set to TRUE. This ensures that processes will no longer be called for this record.
Thus error storms will not occur.

• 2.

If PACT is FALSE

• If DOL holds a link and OMSL is closed_loop

– get values from DOL

– check for link alarm

– force VAL to be 0 or 1

– if MASK is defined

∗ if VAL is 0 set RVAL = 0

– else set RVAL = MASK

• 3.

Check alarms: This routine checks to see if the new VAL causes the alarm status and severity to change. If so, NSEV,
NSTA, and LALM are set.

• 4.

1.5. EPICS Record Types 101

EPICS Documentation Sandbox

Check severity and write the new value. See Invalid Output Action Fields for more information on how INVALID
alarms affect output.

• 5.

If PACT has been changed to TRUE, the device support write output routine has started but has not completed writing
the new value. in this case, the processing routine merely returns, leaving PACT TRUE.

• 6.

Check WAIT. If VAL is 1 and WAIT is greater than 0, process again with a VAL=0 after WAIT seconds.

• 7.

Check to see if monitors should be invoked.

• Alarm monitors are invoked if the alarm status or severity has changed.

• Archive and value change monitors are invoked if MLST is not equal to VAL.

• Monitors for RVAL and for RBV are checked whenever other monitors are invoked.

• NSEV and NSTA are reset to 0.

• 8 Scan forward link if necessary, set PACT FALSE, and return

Device support

Fields Of Interest To Device Support

Each binary output record must have an associated set of device support routines. The primary responsibility of the
device support routines is to write a new value whenever write_bo() is called. The device support routines are
primarily interested in the following fields:

Field Summary Type DCT Default Read Write CA PP
PACT Record active UCHAR No Yes No No

DPVT Device Private NOACCESS No No No No

NSEV New Alarm Severity MENU menuAlarmSevr No Yes No No

NSTA New Alarm Status MENU menuAlarmStat No Yes No No

VAL Current Value ENUM Yes Yes Yes Yes

OUT Output Specification OUTLINK Yes Yes Yes No

RVAL Raw Value ULONG No Yes Yes Yes

MASK Hardware Mask ULONG No Yes No No

RBV Readback Value ULONG No Yes No No

102 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Device Support Routines

Device support consists of the following routines:

long report(int level)

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

long init(int after)

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

init_record(precord)

This routine is optional. If provided, it is called by record support init_record() routine. It should determine MASK
if it is needed.

• 0: Success. RVAL modified (VAL will be set accordingly)

• 2: Success. VAL modified

• other: Error

get_ioint_info(int cmd, struct dbCommon *precord, IOSCANPVT *ppvt)

This routine is called by the ioEventScan system each time the record is added or deleted from an I/O event scan list.
cmd has the value (0,1) if the record is being (added to, deleted from) an I/O event list. It must be provided for any
device type that can use the ioEvent scanner.

write_bo(precord)

This routine must output a new value. It returns the following values:

• 0: Success

• other: Error.

1.5. EPICS Record Types 103

EPICS Documentation Sandbox

Device Support For Soft Records

Two soft device support modules Soft Channel and Raw Soft Channel are provided for output records not related
to actual hardware devices. The OUT link type must be either CONSTANT, DB_LINK, or CA_LINK.

Soft Channel

This module writes the current value of VAL.

If the OUT link type is PV_LINK, then dbCaAddInlink() is called by init_record(). init_record() always re-
turns a value of 2, which means that no conversion will ever be attempted. write_bo() calls recGblPutLinkValue()
to write the current value of VAL. See “Soft Output” for details.

Raw Soft Channel

This module is like the previous except that it writes the current value of RVAL

1.5.8 Calculation Record (calc)

The calculation or “Calc” record is used to perform algebraic, relational, and logical operations on values retrieved
from other records. The result of its operations can then be accessed by another record so that it can then be used.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The Calc record has the standard fields for specifying under what circumstances the record will be processed. These
fields are described in Scan Fields.

Field Summary Type DCT Default Read Write CA PP
SCAN Scan Mechanism MENU menuScan Yes Yes Yes No

PHAS Scan Phase SHORT Yes Yes Yes No

EVNT Event Name STRING [40] Yes Yes Yes No

PRIO Scheduling Priority MENU menuPriority Yes Yes Yes No

PINI Process at iocInit MENU menuPini Yes Yes Yes No

104 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Read Parameters

The read parameters for the Calc record consist of 12 input links INPA, INPB, . . . INPL. The fields can be database
links, channel access links, or constants. If they are links, they must specify another record’s field or a channel access
link. If they are constants, they will be initialized with the value they are configured with and can be changed via
dbPuts. They cannot be hardware addresses.

See Address Specification for information on how to specify database links.

Field Summary Type DCT Default Read Write CA PP
INPA Input A INLINK Yes Yes Yes No

INPB Input B INLINK Yes Yes Yes No

INPC Input C INLINK Yes Yes Yes No

INPD Input D INLINK Yes Yes Yes No

INPE Input E INLINK Yes Yes Yes No

INPF Input F INLINK Yes Yes Yes No

INPG Input G INLINK Yes Yes Yes No

INPH Input H INLINK Yes Yes Yes No

INPI Input I INLINK Yes Yes Yes No

INPJ Input J INLINK Yes Yes Yes No

INPK Input K INLINK Yes Yes Yes No

INPL Input L INLINK Yes Yes Yes No

Expression

At the core of the Calc record lies the CALC and RPCL fields. The CALC field contains the infix expresion which the
record routine will use when it processes the record. The resulting value is placed in the VAL field and can be accessed
from there. The CALC expression is actually converted to opcode and stored as Reverse Polish Notation in the RPCL
field. It is this expression which is actually used to calculate VAL. The Reverse Polish expression is evaluated more
efficiently during run-time than an infix expression. CALC can be changed at run-time, and a special record routine
calls a function to convert it to Reverse Polish Notation.

The infix expressions that can be used are very similar to the C expression syntax, but with some additions and subtle
differences in operator meaning and precedence. The string may contain a series of expressions separated by a semi-
colon character “;” any one of which may actually provide the calculation result; however, all of the other expressions
included must assign their result to a variable. All alphabetic elements described below are case independent, so upper
and lower case letters may be used and mixed in the variable and function names as desired. Spaces may be used
anywhere within an expression except between characters that make up a single expression element.

The range of expressions supported by the calculation record are separated into literals, constants, operands, algebraic
operators, trigonometric operators, relational operators, logical operators, the assignment operator, parentheses and

1.5. EPICS Record Types 105

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#address-specification

EPICS Documentation Sandbox

commas, and the question mark or ‘?:’ operator.

Field Summary Type DCT Default Read Write CA PP
CALC Calculation STRING [80] Yes Yes Yes Yes

RPCL Reverse Polish Calc NOACCESS No No No No

Literals

• Standard double precision floating point numbers

• Inf: Infinity

• Nan: Not a Number

Constants

• PI: returns the mathematical constant

• D2R: evaluates to /180 which, when used as a multiplier, converts an angle from degrees to radians

• R2D: evaluates to 180/ which as a multiplier converts an angle from radians to degrees

Operands

The expression uses the values retrieved from the INPx links as operands, though constants can be used as operands
too. These values retrieved from the input links are stored in the A-L fields. The values to be used in the expression are
simply referenced by the field letter. For instance, the value obtained from INPA link is stored in the field A, and the
value obtained from INPB is stored in field B. The field names can be included in the expression which will operate on
their respective values, as in A+B. Also, the RNDM nullary function can be included as an operand in the expression
in order to generate a random number between 0 and 1.

106 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
A Value of Input A DOUBLE No Yes Yes Yes

B Value of Input B DOUBLE No Yes Yes Yes

C Value of Input C DOUBLE No Yes Yes Yes

D Value of Input D DOUBLE No Yes Yes Yes

E Value of Input E DOUBLE No Yes Yes Yes

F Value of Input F DOUBLE No Yes Yes Yes

G Value of Input G DOUBLE No Yes Yes Yes

H Value of Input H DOUBLE No Yes Yes Yes

I Value of Input I DOUBLE No Yes Yes Yes

J Value of Input J DOUBLE No Yes Yes Yes

K Value of Input K DOUBLE No Yes Yes Yes

L Value of Input L DOUBLE No Yes Yes Yes

The keyword VAL returns the current contents of the VAL field (which can be written to by a CA put, so it might not
be the result from the last time the expression was evaluated).

Algebraic Operators

• ABS: Absolute value (unary)

• SQR: Square root (unary)

• MIN: Minimum (any number of args)

• MAX: Maximum (any number of args)

• FINITE: returns non-zero if none of the arguments are NaN or Inf (any number of args)

• ISNAN: returns non-zero if any of the arguments is NaN or Inf (any number of args)

• CEIL: Ceiling (unary)

• FLOOR: Floor (unary)

• LOG: Log base 10 (unary)

• LOGE: Natural log (unary)

• LN: Natural log (unary)

• EXP: Exponential function (unary)

• ^ : Exponential (binary)

• ** : Exponential (binary)

1.5. EPICS Record Types 107

EPICS Documentation Sandbox

• – : Addition (binary)

• – : Subtraction (binary)

• * : Multiplication (binary)

• / : Division (binary)

•

• NOT: Negate (unary)

Trigonometric Operators

• SIN: Sine

• SINH: Hyperbolic sine

• ASIN: Arc sine

• COS: Cosine

• COSH: Hyperbolic cosine

• ACOS: Arc cosine

• TAN: Tangent

• TANH: Hyperbolic tangent

• ATAN: Arc tangent

Relational Operators

• >= : Greater than or equal to

• > : Greater than

• <= : Less than or equal to

• < : Less than

• # : Not equal to

• = : Equal to

Logical Operators

• && : And

• || : Or

• ! : Not

108 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Bitwise Operators

• | : Bitwise Or

• & : Bitwise And

• OR : Bitwise Or

• AND : Bitwise And

• XOR : Bitwise Exclusive Or

• ~ : One’s Complement

• << : Arithmetic Left Shift

• >> : Arithmetic Right Shift

• >>> : Logical Right Shift

Assignment Operator

• := : assigns a value (right hand side) to a variable (i.e. field)

Parantheses, Comma, and Semicolon

The open and close parentheses are supported. Nested parentheses are supported.

The comma is supported when used to separate the arguments of a binary function.

The semicolon is used to separate expressions. Although only one traditional calculation expression is allowed, multiple
assignment expressions are allowed.

Conditional Expression

The C language’s question mark operator is supported. The format is: condition ? True result : False
result

Expression Examples

Algebraic

A + B + 10

• Result is A + B + 10

1.5. EPICS Record Types 109

EPICS Documentation Sandbox

Relational

(A + B) < (C + D)

• Result is 1 if (A + B) < (C + D)

• Result is 0 if (A + B) >= (C + D)

Question Mark

(A + B) < (C + D) ? E : F + L + 10

• Result is E if (A + B) < (C + D)

• Result is F + L + 10 if (A + B) >= (C + D)

Prior to Base 3.14.9 it was legal to omit the : and the second (else) part of the conditional, like this:

(A + B)<(C + D) ? E

•

Result is E if (A + B)<(C + D)

Result is unchanged if (A + B)>=(C + D)

From 3.14.9 onwards, this expresion must be written as
`(A + B) < (C + D) ? E : VAL`

Logical

A & B

• Causes the following to occur:

– Convert A to integer

– Convert B to integer

– Bitwise And A and B

– Convert result to floating point

Assignment

sin(a); a:=a+D2R

• Causes the Calc record to output the successive values of a sine curve in 1 degree intervals.

110 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Operator Display Parameters

These parameters are used to present meaningful data to the operator. These fields are used to display VAL and other
parameters of the calculation record either textually or graphically.

The EGU field contains a string of up to 16 characters which is supplied by the user and which describes the values
being operated upon. The string is retrieved whenever the routine get_units is called. The EGU string is solely for
an operator’s sake and does not have to be used.

The HOPR and LOPR fields only refer to the limits of the VAL, HIHI, HIGH, LOW and LOLO fields. PREC controls
the precision of the VAL field.

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
EGU Engineering Units STRING [16] Yes Yes Yes No

PREC Display Precision SHORT Yes Yes Yes No

HOPR High Operating Rng DOUBLE Yes Yes Yes No

LOPR Low Operating Range DOUBLE Yes Yes Yes No

NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Alarm Parameters

The possible alarm conditions for the Calc record are the SCAN, READ, Calculation, and limit alarms. The SCAN
and READ alarms are called by the record support routines. The Calculation alarm is called by the record processing
routine when the CALC expression is an invalid one, upon which an error message is generated.

The following alarm parameters which are configured by the user, define the limit alarms for the VAL field and the
severity corresponding to those conditions.

The HYST field defines an alarm deadband for each limit.

See Alarm Specification for a complete explanation of record alarms and of the standard fields. Alarm Fields lists other
fields related to alarms that are common to all record types.

1.5. EPICS Record Types 111

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#alarm-specification

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
HIHI Hihi Alarm Limit DOUBLE Yes Yes Yes Yes

HIGH High Alarm Limit DOUBLE Yes Yes Yes Yes

LOW Low Alarm Limit DOUBLE Yes Yes Yes Yes

LOLO Lolo Alarm Limit DOUBLE Yes Yes Yes Yes

HHSV Hihi Severity MENU menuAlarmSevr Yes Yes Yes Yes

HSV High Severity MENU menuAlarmSevr Yes Yes Yes Yes

LSV Low Severity MENU menuAlarmSevr Yes Yes Yes Yes

LLSV Lolo Severity MENU menuAlarmSevr Yes Yes Yes Yes

HYST Alarm Deadband DOUBLE Yes Yes Yes No

Monitor Parameters

These paramaeters are used to determine when to send monitors for the value fields. These monitors are sent when
the value field exceeds the last monitored field by the appropriate deadband, the ADEL for archiver monitors and
the MDEL field for all other types of monitors. If these fields have a value of zero, everytime the value changes,
monitors are triggered; if they have a value of -1, everytime the record is scanned, monitors are triggered. See “Monitor
Specification” for a complete explanation of monitors.

Field Summary Type DCT Default Read Write CA PP
ADEL Archive Deadband DOUBLE Yes Yes Yes No

MDEL Monitor Deadband DOUBLE Yes Yes Yes No

Run-time Parameters

These fields are not configurable using a configuration tool and none are modifiable at run-time. They are used to
process the record.

The LALM field is used to implement the hysteresis factor for the alarm limits.

The LA-LL fields are used to decide when to trigger monitors for the corresponding fields. For instance, if LA does
not equal the value A, monitors for A are triggered. The MLST and ALST fields are used in the same manner for the
VAL field.

112 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
LALM Last Value Alarmed DOUBLE No Yes No No

ALST Last Value Archived DOUBLE No Yes No No

MLST Last Val Monitored DOUBLE No Yes No No

LA Prev Value of A DOUBLE No Yes No No

LB Prev Value of B DOUBLE No Yes No No

LC Prev Value of C DOUBLE No Yes No No

LD Prev Value of D DOUBLE No Yes No No

LE Prev Value of E DOUBLE No Yes No No

LF Prev Value of F DOUBLE No Yes No No

LG Prev Value of G DOUBLE No Yes No No

LH Prev Value of H DOUBLE No Yes No No

LI Prev Value of I DOUBLE No Yes No No

LJ Prev Value of J DOUBLE No Yes No No

LK Prev Value of K DOUBLE No Yes No No

LL Prev Value of L DOUBLE No Yes No No

Record Support

Record Support Routines

init_record

For each constant input link, the corresponding value field is initialized with the constant value if the input link is
CONSTANT or a channel access link is created if the input link is a PV_LINK.

A routine postfix is called to convert the infix expression in CALC to Reverse Polish Notation. The result is stored in
RPCL.

1.5. EPICS Record Types 113

EPICS Documentation Sandbox

process

See next section.

special

This is called if CALC is changed. special calls postfix.

get_units

Retrieves EGU.

get_precision

Retrieves PREC.

get_graphic_double

Sets the upper display and lower display limits for a field. If the field is VAL, HIHI, HIGH, LOW, or LOLO, the limits
are set to HOPR and LOPR, else if the field has upper and lower limits defined they will be used, else the upper and
lower maximum values for the field will be used.

get_control_double

Sets the upper control and the lower control limits for a field. If the field is VAL, HIHI, HIGH, LOW, or LOLO, the
limits are set to HOPR and LOPR, else if the field has upper and lower limits defined they will be used, else the upper
and lower maximum values for the field type will be used.

get_alarm_double

Sets the following values:

upper_alarm_limit = HIHI

upper_warning_limit = HIGH

lower_warning_limit = LOW

lower_alarm_limit = LOLO

Record Processing

Routine process implements the following algorithm:

• 1.

Fetch all arguments.

• 2.

Call routine calcPerform, which calculates VAL from the postfix version of the expression given in CALC. If
calcPerform returns success UDF is set to FALSE.

114 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

• 3.

Check alarms. This routine checks to see if the new VAL causes the alarm status and severity to change. If so, NSEV,
NSTA, and LALM are set. It also honors the alarm hysteresis factor (HYST). Thus the value must change by at least
HYST before the alarm status and severity changes.

• 4.

Check to see if monitors should be invoked.

• Alarm monitors are invoked if the alarm status or severity has changed.

• Archive and values change monitors are invoked if ADEL and MDEL conditions are met.

• Monitors for A-L are checked whenever other monitors are invoked.

• NSEV and NSTA are reset to 0.

• 5.

Scan forward link if necessary, set PACT FALSE, and return.

1.5.9 Calculation Output Record (calcout)

The Calculation Output or “Calcout” record is similar to the Calc record with the added feature of having outputs (an
“output link” and an “output event”) which are conditionally executed based on the result of the calculation. This
feature allows conditional branching to be implemented within an EPICS database (e.g. process Record_A only if
Record_B has a value of 0). The Calcout record is also similar to the Wait record (with additional features) but uses
EPICS standard INLINK and OUTLINK fields rather than the DBF_STRING fields used in the Wait record. For new
databases, it is recommended that the Calcout record be used instead of the Wait record.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The Calcout record has the standard fields for specifying under what circumstances the record will be processed. These
fields are listed in Scan Fields.

Read Parameters

The read parameters for the Calcout record consists of 12 input links INPA, INPB, . . . INPL. The fields can be database
links, channel access links, or constants. If they are links, they must specify another record’s field. If they are constants,
they will be initialized with the value they are configured with and can be changed via dbPuts. These fields cannot be
hardware addresses. In addition, the Calcout record contains the INAV, INBV, . . . INLV fields which indicate the status
of the link fields, for example, whether or not the specified PV was found and a link to it established. See “Operator
Display Parameters” for an explanation of these fields.

1.5. EPICS Record Types 115

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
INPA Input A INLINK Yes Yes Yes No

INPB Input B INLINK Yes Yes Yes No

INPC Input C INLINK Yes Yes Yes No

INPD Input D INLINK Yes Yes Yes No

INPE Input E INLINK Yes Yes Yes No

INPF Input F INLINK Yes Yes Yes No

INPG Input G INLINK Yes Yes Yes No

INPH Input H INLINK Yes Yes Yes No

INPI Input I INLINK Yes Yes Yes No

INPJ Input J INLINK Yes Yes Yes No

INPK Input K INLINK Yes Yes Yes No

INPL Input L INLINK Yes Yes Yes No

Expression

Like the Calc record, the Calcout record has a CALC field in which the developer can enter an infix expression which
the record routine will evaluate when it processes the record. The resulting value is placed in the VAL field. This value
can then be used by the OOPT field (see “Output Parameters”) to determine whether or not to write to the output link
or post an output event. It can also be the value that is written to the output link. The CALC expression is actually
converted to opcode and stored in Reverse Polish Notation in the RPCL field. It is this expression which is actually used
to calculate VAL. The Reverse Polish expression is evaluated more efficiently during run-time than an infix expression.
CALC can be changes at run-time, and a special record routine will call a function to convert it to Reverse Polish
Notation.

The infix expressions that can be used are very similar to the C expression syntax, but with some additions and subtle
differences in operator meaning and precedence. The string may contain a series of expressions separated by a semi-
colon character ‘;’ any one of which may actually provide the calculation result; however all of the other expressions
included must assign their result to a variable. All alphabetic elements described below are case independent, so upper
and lower case letters may be used and mixed in the variable and function names as desired. Spaces may be used
anywhere within an expression except between the characters that make up a single expression element.

The range of expressions supported by the calculation record are separated into literals, constants, operands, algebraic
operators, trigonometric operators, relational operators, logical operator, the assignment operator, parentheses and
commas, and the question mark or ‘?:’ operator.

116 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
CALC Calculation STRING [80] Yes Yes Yes Yes

VAL Result DOUBLE Yes Yes Yes No

RPCL Reverse Polish Calc NOACCESS No No No No

Literals

• Standard double precision floating point numbers

• Inf: Infinity

• Nan: Not a Number

Constants

• PI: returns the mathematical constant

• D2R: evaluates to /180 which, when used as a multiplier, converts an angle from degrees to radians

• R2D: evaluates to 180/ which, when used as a multiplier, converts an angle from radians to degrees

Operands

The expression can use the values retrieved from the INPx links as operands, though constants can be used as operands
too. These values retrieved from the input links are stored in the A-L fields. The values to be used in the expression are
simple references by the field letter. For instance, the value obtained from the INPA link is stored in field A, and the
values obtained from the INPB link is stored in the field B. The names can be included in the expression will operate
on their respective values, as in A+B.

1.5. EPICS Record Types 117

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
A Value of Input A DOUBLE No Yes Yes Yes

B Value of Input B DOUBLE No Yes Yes Yes

C Value of Input C DOUBLE No Yes Yes Yes

D Value of Input D DOUBLE No Yes Yes Yes

E Value of Input E DOUBLE No Yes Yes Yes

F Value of Input F DOUBLE No Yes Yes Yes

G Value of Input G DOUBLE No Yes Yes Yes

H Value of Input H DOUBLE No Yes Yes Yes

I Value of Input I DOUBLE No Yes Yes Yes

J Value of Input J DOUBLE No Yes Yes Yes

K Value of Input K DOUBLE No Yes Yes Yes

L Value of Input L DOUBLE No Yes Yes Yes

The keyword VAL returns the current contents of the expression’s result field, i.e. the VAL field for the CALC expres-
sion and the OVAL field for the OCAL expression. (These fields can be written to by CA put, so it might not be the
result from the last time the expression was evaluated).

Algebraic Operations

• ABS: Absolute value (unary)

• SQR: Square root (unary)

• MIN: Minimum (any number of args)

• MAX: Maximum (any number of args)

• FINITE: returns non-zero if none of the arguments are NaN or Inf (any number of args)

• ISNAN: returns non-zero if any of the arguments is NaN or Inf (any number of args)

• CEIL: Ceiling (unary)

• FLOOR: Floor (unary)

• LOG: Log base 10 (unary)

• LOGE: Natural log (unary)

• LN: Natural log (unary)

• EXP: Exponential function (unary)

• ^ : Exponential (binary)

118 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

• ** : Exponential (binary)

• – : Addition (binary)

• – : Subtraction (binary)

• * : Multiplication (binary)

• / : Division (binary)

•

• NOT: Negate (unary)

Trigonometric Operators

• SIN: Sine

• SINH: Hyperbolic sine

• ASIN: Arc sine

• COS: Cosine

• COSH: Hyperbolic cosine

• ACOS: Arc cosine

• TAN: Tangent

• TANH: Hyperbolic tangent

• ATAN: Arc tangent

Relational Operators

• >= : Greater than or equal to

• > : Greater than

• <= : Less than or equal to

• < : Less than

• # : Not equal to

• = : Equal to

Logical Operators

• && : And

• || : Or

• ! : Not

1.5. EPICS Record Types 119

EPICS Documentation Sandbox

Bitwise Operators

• | : Bitwise Or

• & : Bitwise And

• OR : Bitwise Or

• AND : Bitwise And

• XOR : Bitwise Exclusive Or

• ~ : One’s Complement

• << : Arithmetic Left Shift

• >> : Arithmetic Right Shift

• >>> : Logical Right Shift

Assignment Operator

• := : assigns a value (right hand side) to a variable (i.e. field)

Parentheses, Comma, and Semicolon

The open and close parentheses are supported. Nested parentheses are supported.

The comma is supported when used to separate the arguments of a binary function.

The semicolon is used to separate expressions. Although only one traditional calculation expression is allowed, multiple
assignment expressions are allowed.

Conditional Expression

The C language’s question mark operator is supported. The format is: condition ? True result : False
result

Expression Examples

Algebraic

A + B + 10

• Result is A + B + 10

120 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Relational

(A + B) < (C + D)

• Result is 1 if (A + B) < (C + D)

• Result is 0 if (A + B) >= (C + D)

Question Mark

(A + B) < (C + D) ? E : F + L + 10

• Result is E if (A + B) < (C + D)

• Result is F + L + 10 if (A + B) >= (C + D)

Prior to Base 3.14.9 it was legal to omit the : and the second (else) part of the conditional, like this:

(A + B)<(C + D) ? E

•

Result is E if (A + B)<(C + D)

Result is unchanged if (A + B)>=(C + D)

From 3.14.9 onwards, this expression must be written as
`(A + B) < (C + D) ? E : VAL`

Logical

A & B

• Causes the following to occur:

– Convert A to integer

– Convert B to integer

– Bitwise And A and B

– Convert result to floating point

Assignment

sin(a); a:=a+D2R

• Causes the Calc record to output the successive values of a sine curve in 1 degree intervals.

1.5. EPICS Record Types 121

EPICS Documentation Sandbox

Output Parameters

These parameters specify and control the output capabilities of the Calcout record. They determine when to write the
output, where to write it, and what the output will be. The OUT link specifies the Process Variable to which the result
will be written.

Menu calcoutOOPT

The OOPT field determines the condition that causes the output link to be written to. It’s a menu field that has six
choices:

Index Identifier Choice String
0 calcoutOOPT_Every_Time Every Time
1 calcoutOOPT_On_Change On Change
2 calcoutOOPT_When_Zero When Zero
3 calcoutOOPT_When_Non_zero When Non-zero
4 calcoutOOPT_Transition_To_Zero Transition To Zero
5 calcoutOOPT_Transition_To_Non_zero Transition To Non-zero

• Every Time – write output every time record is processed.

• On Change – write output every time VAL changes, i.e., every time the result of the expression changes.

• When Zero – when record is processed, write output if VAL is zero.

• When Non-zero – when record is processed, write output if VAL is non-zero.

• Transition To Zero – when record is processed, write output only if VAL is zero and the last value was
non-zero.

• Transition To Non-zero – when record is processed, write output only if VAL is non-zero and last value
was zero.

Menu calcoutDOPT

The DOPT field determines what data is written to the output link when the output is executed. The field is a menu
field with two options:

Index Identifier Choice String
0 calcoutDOPT_Use_VAL Use CALC
1 calcoutDOPT_Use_OVAL Use OCAL

If Use CALC is specified, when the record writes its output it will write the result of the expression in the CALC field,
that is, it will write the value of the VAL field. If Use OCAL is specified, the record will instead write the result of the
expression in the OCAL field, which is contained in the OVAL field. The OCAL field is exactly like the CALC field
and has the same functionality it can contain the string representation of an expression which is evaluated at run-time.
Thus, if necessary, the record can use the result of the CALC expression to determine if data should be written and can
use the result of the OCAL expression as the data to write.

If the OEVT field specifies a non-zero integer and the condition in the OOPT field is met, the record will post a
corresponding event. If the ODLY field is non-zero, the record pauses for the specified number of seconds before
executing the OUT link or posting the output event. During this waiting period the record is “active” and will not be
processed again until the wait is over. The field DLYA is equal to 1 during the delay period. The resolution of the delay
entry system dependent.

122 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

The IVOA field specifies what action to take with the OUT link if the Calcout record enters an INVALID alarm status.
The options are Continue normally, Don't drive outputs, and Set output to IVOV. If the IVOA field is
Set output to IVOV, the data entered into the IVOV field is written to the OUT link if the record alarm severity is
INVALID.

Field Summary Type DCT Default Read Write CA PP
OUT Output Specification OUTLINK Yes Yes Yes No

OOPT Output Execute Opt MENU calcoutOOPT Yes Yes Yes No

DOPT Output Data Opt MENU calcoutDOPT Yes Yes Yes No

OCAL Output Calculation STRING [80] Yes Yes Yes Yes

OVAL Output Value DOUBLE No Yes Yes No

OEVT Event To Issue STRING [40] Yes Yes Yes No

ODLY Output Execute Delay DOUBLE Yes Yes Yes No

IVOA INVALID output action MENU menuIvoa Yes Yes Yes No

IVOV INVALID output value DOUBLE Yes Yes Yes No

Operator Display Parameter

These parameters are used to present meaningful data to the operator. Some are also meant to represent the status of
the record at run-time.

The EGU field contains a string of up to 16 characters which is supplied by the user and which describes the values
being operated upon. The string is retrieved whenever the routine get_units() is called. The EGU string is solely
for an operator’s sake and does not have to be used.

The HOPR and LOPR fields only refer to the limits of the VAL, HIHI, HIGH, LOW, and LOLO fields. PREC controls
the precision of the VAL field.

Menu calcoutINAV

The INAV-INLV fields indicate the status of the link to the PVs specified in the INPA-INPL fields respectively. These
fields can have four possible values:

Index Identifier Choice String
0 calcoutINAV_EXT_NC Ext PV NC
1 calcoutINAV_EXT Ext PV OK
2 calcoutINAV_LOC Local PV
3 calcoutINAV_CON Constant

• Ext PV NC – the PV wasn’t found on this IOC and a Channel Access link hasn’t been established.

• Ext PV OK – the PV wasn’t found on this IOC and a Channel Access link has been established.

• Local PV – the PV was found on this IOC.

1.5. EPICS Record Types 123

EPICS Documentation Sandbox

• Constant – the corresponding link field is a constant.

The OUTV field indicates the status of the OUT link. If has the same possible values as the INAV-INLV fields.

The CLCV and OLCV fields indicate the validity of the expression in the CALC and OCAL fields respectively. If the
expression in invalid, the field is set to one.

The DLYA field is set to one during the delay specified in ODLY.

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
EGU Engineering Units STRING [16] Yes Yes Yes No

PREC Display Precision SHORT Yes Yes Yes No

HOPR High Operating Rng DOUBLE Yes Yes Yes No

LOPR Low Operating Range DOUBLE Yes Yes Yes No

INAV INPA PV Status MENU calcoutINAV No 1 Yes No No
INBV INPB PV Status MENU calcoutINAV No 1 Yes No No
INCV INPC PV Status MENU calcoutINAV No 1 Yes No No
INDV INPD PV Status MENU calcoutINAV No 1 Yes No No
INEV INPE PV Status MENU calcoutINAV No 1 Yes No No
INFV INPF PV Status MENU calcoutINAV No 1 Yes No No
INGV INPG PV Status MENU calcoutINAV No 1 Yes No No
INHV INPH PV Status MENU calcoutINAV No 1 Yes No No
INIV INPI PV Status MENU calcoutINAV No 1 Yes No No
INJV INPJ PV Status MENU calcoutINAV No 1 Yes No No
INKV INPK PV Status MENU calcoutINAV No 1 Yes No No
INLV INPL PV Status MENU calcoutINAV No 1 Yes No No
OUTV OUT PV Status MENU calcoutINAV No Yes No No

CLCV CALC Valid LONG No Yes Yes No

OCLV OCAL Valid LONG No Yes Yes No

DLYA Output Delay Active USHORT No Yes No No

NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

124 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Alarm Parameters

The possible alarm conditions for the Calcout record are the SCAN, READ, Calculation, and limit alarms. The SCAN
and READ alarms are called by the record support routines. The Calculation alarm is called by the record processing
routine when the CALC expression is an invalid one, upon which an error message is generated.

The following alarm parameters, which are configured by the user, define the limit alarms for the VAL field and the
severity corresponding to those conditions.

The HYST field defines an alarm deadband for each limit.

See Alarm Specification for a complete explanation of record alarms and of the standard fields. Alarm Fields lists other
fields related to alarms that are common to all record types.

Field Summary Type DCT Default Read Write CA PP
HIHI Hihi Alarm Limit DOUBLE Yes Yes Yes Yes

HIGH High Alarm Limit DOUBLE Yes Yes Yes Yes

LOW Low Alarm Limit DOUBLE Yes Yes Yes Yes

LOLO Lolo Alarm Limit DOUBLE Yes Yes Yes Yes

HHSV Hihi Severity MENU menuAlarmSevr Yes Yes Yes Yes

HSV High Severity MENU menuAlarmSevr Yes Yes Yes Yes

LSV Low Severity MENU menuAlarmSevr Yes Yes Yes Yes

LLSV Lolo Severity MENU menuAlarmSevr Yes Yes Yes Yes

HYST Alarm Deadband DOUBLE Yes Yes Yes No

Monitor Parameters

These parameters are used to determine when to send monitors for the value fields. These monitors are sent when
the value field exceeds the last monitored field by the appropriate deadband, the ADEL for archiver monitors and the
MDEL field for all other types of monitors. If these fields have a value of zero, every time the value changes, monitors
are triggered; if they have a value of -1, every time the record is scanned, monitors are triggered. See “Monitor
Specification” for a complete explanation of monitors.

Field Summary Type DCT Default Read Write CA PP
ADEL Archive Deadband DOUBLE Yes Yes Yes No

MDEL Monitor Deadband DOUBLE Yes Yes Yes No

1.5. EPICS Record Types 125

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#alarm-specification

EPICS Documentation Sandbox

Run-time Parameters

These fields are not configurable using a configuration tool and none are modifiable at run-time. They are used to
process the record.

The LALM field is used to implement the hysteresis factor for the alarm limits.

The LA-LL fields are used to decide when to trigger monitors for the corresponding fields. For instance, if LA does
not equal the value for A, monitors for A are triggered. The MLST and ALST fields are used in the same manner for
the VAL field.

Field Summary Type DCT Default Read Write CA PP
LALM Last Value Alarmed DOUBLE No Yes No No

ALST Last Value Archived DOUBLE No Yes No No

MLST Last Val Monitored DOUBLE No Yes No No

LA Prev Value of A DOUBLE No Yes No No

LB Prev Value of B DOUBLE No Yes No No

LC Prev Value of C DOUBLE No Yes No No

LD Prev Value of D DOUBLE No Yes No No

LE Prev Value of E DOUBLE No Yes No No

LF Prev Value of F DOUBLE No Yes No No

LG Prev Value of G DOUBLE No Yes No No

LH Prev Value of H DOUBLE No Yes No No

LI Prev Value of I DOUBLE No Yes No No

LJ Prev Value of J DOUBLE No Yes No No

LK Prev Value of K DOUBLE No Yes No No

LL Prev Value of L DOUBLE No Yes No No

Record Support

Record Support Routines

init_record

For each constant input link, the corresponding value field is initialized with the constant value if the input link is
CONSTANT or a channel access link is created if the input link is PV_LINK.

126 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

A routine postfix is called to convert the infix expression in CALC and OCAL to Reverse Polish Notation. The result
is stored in RPCL and ORPC, respectively.

process

See next section.

special

This is called id CALC or OCAL is changed. special calls postfix.

get_units

Retrieves EGU.

get_precision

Retrieves PREC.

get_graphic_double

Sets the upper display and lower display limits for a field. If the field is VAL, HIHI, HIGH, LOW, or LOLO, the limits
are set to HOPR and LOPR, else if the field has upper and lower limits defined they will be used, else the upper and
lower maximum values for the field type will be used.

get_control_double

Sets the upper control and lower control limits for a field. If the VAL, HIHI, HIGH, LOW, or LOLO, the limits are set
to HOPR and LOPR, else if the field has upper and lower limits defined they will be used, else the upper and lower
maximum values for the field will be used.

get_alarm_double

Sets the following values:

upper_alarm_limit = HIHI

upper_warning_limit = HIGH

lower warning_limit = LOW

lower_alarm_limit = LOLO

1.5. EPICS Record Types 127

EPICS Documentation Sandbox

Record Processing

process()

The process() routine implements the following algorithm:

• 1.

Fetch all arguments.

• 2.

Call routine calcPerform(), which calculates VAL from the prefix version of the expression given in CALC. If
calcPerform() returns success, UDF is set to FALSE.

• 3.

Check alarms. This routine checks to see if the new VAL causes the alarm status and severity to change. If so, NSEV,
NSTA and LALM are set. If also honors the alarm hysteresis factor (HYST). Thus the value must change by at least
HYST before the alarm status and severity changes.

• 4.

Determine if the Output Execution Option (OOPT) is met. If met, either execute the output link (and output event) im-
mediately (if ODLY = 0), or schedule a callback after the specified interval. See the explanation for the execOutput()
routine below.

• 5.

Check to see if monitors should be invoked. - Alarm monitors are invoked if the alarm status or severity has changed.
- Archive and value change monitors are invoked if ADEL and MDEL conditions are met. - Monitors for A-L are
checked whenever other monitors are invoked. - NSEV and NSTA are reset to 0

• 6.

If no output delay was specified, scan forward link if necessary, set PACT FALSE, and return.

execOutput()

• 1.

If DOPT field specifies the use of OCAL, call the routine calcPerform() for the postfix version of the expression in
OCAL. Otherwise, use VAL.

• 2.

If the Alarm Severity is INVALID, follow the option as designated by the field IVOA.

• 3.

The Alarm Severity is not INVALID or IVOA specifies “Continue Normally”, put the value of OVAL to the OUT link
and post the event in OEVT (if non-zero).

• 4.

If an output delay was implemented, process the forward link.

128 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

1.5.10 Compression Record (compress)

The data compression record is used to collect and compress data from arrays. When the INP field references a data
array field, it immediately compresses the entire array into an element of an array using one of several algorithms,
overwriting the previous element. If the INP field obtains its value from a scalar-value field, the compression record
will collect a new sample each time the record is processed and add it to the compressed data array as a circular buffer.

The INP link can also specify a constant; however, if this is the case, the compression algorithms are ignored, and the
record support routines merely return after checking the FLNK field.

Record-specific Menus

Menu compressALG

The ALG field which uses this menu controls the compression algorithm used by the record.

Index Identifier Choice String
0 compressALG_N_to_1_Low_Value N to 1 Low Value
1 compressALG_N_to_1_High_Value N to 1 High Value
2 compressALG_N_to_1_Average N to 1 Average
3 compressALG_Average Average
4 compressALG_Circular_Buffer Circular Buffer
5 compressALG_N_to_1_Median N to 1 Median

Menu bufferingALG

The BALG field which uses this menu controls whether new values are inserted at the beginning or the end of the VAL
array.

Index Identifier Choice String
0 bufferingALG_FIFO FIFO Buffer
1 bufferingALG_LIFO LIFO Buffer

Parameter Fields

The record-specific fields are described below.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

1.5. EPICS Record Types 129

EPICS Documentation Sandbox

Scanning Parameters

The compression record has the standard fields for specifying under what circumstances the record will be processed.
Since the compression record supports no direct interfaces to hardware, its SCAN field cannot be set to I/O Intr.
These fields are described in Scan Fields.

Field Summary Type DCT Default Read Write CA PP
SCAN Scan Mechanism MENU menuScan Yes Yes Yes No

PHAS Scan Phase SHORT Yes Yes Yes No

EVNT Event Name STRING [40] Yes Yes Yes No

PRIO Scheduling Priority MENU menuPriority Yes Yes Yes No

PINI Process at iocInit MENU menuPini Yes Yes Yes No

Algorithms and Related Parameters

The user specifies the algorithm to be used in the ALG field. There are six possible algorithms which can be specified
as follows:

Menu compressALG

Index Identifier Choice String
0 compressALG_N_to_1_Low_Value N to 1 Low Value
1 compressALG_N_to_1_High_Value N to 1 High Value
2 compressALG_N_to_1_Average N to 1 Average
3 compressALG_Average Average
4 compressALG_Circular_Buffer Circular Buffer
5 compressALG_N_to_1_Median N to 1 Median

The following fields determine what channel to read and how to compress the data:

Field Summary Type DCT Default Read Write CA PP
ALG Compression Algorithm MENU compressALG Yes Yes Yes No

INP Input Specification INLINK Yes Yes Yes No

NSAM Number of Values ULONG Yes 1 Yes No No
N N to 1 Compression ULONG Yes 1 Yes Yes No
ILIL Init Low Interest Lim DOUBLE Yes Yes Yes No

IHIL Init High Interest Lim DOUBLE Yes Yes Yes No

OFF Offset ULONG No Yes No No

RES Reset SHORT No Yes Yes No

130 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

As stated above, the ALG field specifies which algorithm to be performed on the data.

The INP should be a database or channel access link. Though INP can be a constant, the data compression algorithms
are supported only when INP is a database link. See Address Specification for information on specifying links.

IHIL and ILIL can be set to provide an initial value filter on the input array. If ILIL < IHIL, the input elements will be
skipped until a value is found that is in the range of ILIL to IHIL. Note that ILIL and IHIL are used only in N to 1
algorithms.

OFF provides the offset to the current beginning of the array data. Note that OFF is used only in N to 1 algorithms.

The RES field can be accessed at run time to cause the algorithm to reset itself before the maximum number of samples
are reached.

Algorithms

Circular Buffer algorithm keeps a circular buffer of length NSAM. Each time the record is processed, it gets the data
referenced by INP and puts it into the circular buffer referenced by VAL. The INP can refer to both scalar or array data
and VAL is just a time ordered circular buffer of values obtained from INP. Note that N, ILIL, IHIL and OFF are not
used in Circular Buffer algorithm.

Average takes an average of every element of the array obtained from INP over time; that is, the entire array referenced
by INP is retrieved, and for each element, the new average is calculated and placed in the corresponding element of the
value buffer. The retrieved array is truncated to be of length NSAM. N successive arrays are averaged and placed in
the buffer. Thus, VAL[0] holds the average of the first element of INP over N samples, VAL[1] holds the average of
the next element of INP over N samples, and so on. The following shows the equation:

N to 1 If any of the N to 1 algorithms are chosen, then VAL is a circular buffer of NSAM samples. The actual
algorithm depends on whether INP references a scalar or an array.

If INP refers to a scalar, then N successive time ordered samples of INP are taken. After the Nth sample is obtained,
a new value determined by the algorithm (Lowest, Highest, or Average), is written to the circular buffer referenced by
VAL. If Low Value the lowest value of all the samples is written; if High Value the highest value is written; and if
Average, the average of all the samples are written. The Median setting behaves like Average with scalar input data.

If INP refers to an array, then the following applies:

• N to 1 Low Value

Compress N to 1 samples, keeping the lowest value.

• N to 1 High Value

Compress N to 1 samples, keeping the highest value.

• N to 1 Average

Compress N to 1 samples, taking the average value.

• N to 1 Median

Compress N to 1 samples, taking the median value.

The compression record keeps NSAM data samples.

The field N determines the number of elements to compress into each result.

Thus, if NSAM was 3, and N was also equal to 3, then the algorithms would work as in the following diagram:

1.5. EPICS Record Types 131

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#address-specification

EPICS Documentation Sandbox

Operator Display Parameters

These parameters are used to present meaningful data to the operator. They display the value and other parameters of
the record either textually or graphically.

Field Summary Type DCT Default Read Write CA PP
EGU Engineering Units STRING [16] Yes Yes Yes No

HOPR High Operating Range DOUBLE Yes Yes Yes No

LOPR Low Operating Range DOUBLE Yes Yes Yes No

PREC Display Precision SHORT Yes Yes Yes No

NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

The EGU field should be given a string that describes the value of VAL, but is used whenever the get_units record
support routine is called.

The HOPR and LOPR fields only specify the upper and lower display limits for VAL, HIHI, HIGH, LOLO and LOW
fields.

PREC controls the floating-point precision whenever get_precision is called, and the field being referenced is the
VAL field (i.e., one of the values contained in the circular buffer).

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Alarm Parameters

The compression record has the alarm parameters common to all record types described in Alarm Fields.

132 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Run-time Parameters

These parameters are used by the run-time code for processing the data compression algorithm. They are not config-
urable by the user, though some are accessible at run-time. They can represent the current state of the algorithm or of
the record whose field is referenced by the INP field.

Field Summary Type DCT Default Read Write CA PP
NUSE Number Used ULONG No Yes No No

OUSE Old Number Used ULONG No Yes No No

BPTR Buffer Pointer NOACCESS No No No No

SPTR Summing Buffer Ptr NOACCESS No No No No

WPTR Working Buffer Ptr NOACCESS No No No No

CVB Compress Value Buffer DOUBLE No Yes No No

INPN Number of elements in Working Buffer LONG No Yes No No

INX Current number of readings ULONG No Yes No No

NUSE and OUSE hold the current and previous number of elements stored in VAL.

BPTR points to the buffer referenced by VAL.

SPTR points to an array that is used for array averages.

WPTR points to the buffer containing data referenced by INP.

CVB stores the current compressed value for N to 1 algorithms when INP references a scalar.

INPN is updated when the record processes; if INP references an array and the size changes, the WPTR buffer is
reallocated.

INX counts the number of readings collected.

Record Support

Record Support Routines

long init_record(struct dbCommon *precord, int pass)

Space for all necessary arrays is allocated. The addresses are stored in the appropriate fields in the record.

long process(struct dbCommon *precord)

See “Record Processing” below.

long special(struct dbAddr *paddr, int after)

This routine is called when RSET, ALG, or N are set. It performs a reset.

1.5. EPICS Record Types 133

EPICS Documentation Sandbox

long cvt_dbaddr(struct dbAddr *paddr)

This is called by dbNameToAddr. It makes the dbAddr structure refer to the actual buffer holding the result.

long get_array_info(struct dbAddr *paddr, long *no_elements, long *offset)

Obtains values from the circular buffer referenced by VAL.

long put_array_info(struct dbAddr *paddr, long nNew);

Writes values into the circular buffer referenced by VAL.

long get_units(struct dbAddr *paddr, char *units);

Retrieves EGU.

long get_precision(const struct dbAddr *paddr, long *precision);

Retrieves PREC.

long get_graphic_double(struct dbAddr *paddr, struct dbr_grDouble *p);

Sets the upper display and lower display limits for a field. If the field is VAL, the limits are set to HOPR and LOPR,
else if the field has upper and lower limits defined they will be used, else the upper and lower maximum values for the
field type will be used.

long get_control_double(struct dbAddr *paddr, struct dbr_ctrlDouble *p);

Sets the upper control and the lower control limits for a field. If the field is VAL, the limits are set to HOPR and LOPR,
else if the field has upper and lower limits defined they will be used, else the upper and lower maximum values for the
field type will be used.

Record Processing

Routine process implements the following algorithm:

1. If INP is not a database link, check monitors and the forward link and return.

2. Get the current data referenced by INP.

3. Perform the appropriate algorithm:

• Average: Read N successive instances of INP and perform an element by element average. Until N instances
have been obtained it just return without checking monitors or the forward link. When N instances have
been obtained complete the algorithm, store the result in the VAL array, check monitors and the forward
link, and return.

• Circular Buffer: Write the values obtained from INP into the VAL array as a circular buffer, check monitors
and the forward link, and return.

• N to 1 xxx when INP refers to a scalar: Obtain N successive values from INP and apply the N to 1 xxx
algorithm to these values. Until N values are obtained monitors and forward links are not triggered. When
N successive values have been obtained, complete the algorithm, check monitors and trigger the forward
link, and return.

134 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

• N to 1 xxx when INP refers to an array: The ILIL and IHIL are honored if ILIL < IHIL. The input array
is divided into subarrays of length N. The specified N to 1 xxx compression algorithm is applied to each
sub-array and the result stored in the array referenced by VAL. The monitors and forward link are checked.

4. If success, set UDF to FALSE.

5. Check to see if monitors should be invoked:

• Alarm monitors are invoked if the alarm status or severity has changed.

• NSEV and NSTA are reset to 0.

6. Scan forward link if necessary, set PACT FALSE, and return.

1.5.11 Data Fanout Record (dfanout)

The Data Fanout or “dfanout” record is used to forward data to up to eight other records. It’s similar to the fanout
record except that the capability to forward data has been added to it. If has no associated device support.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The data fanout record has the standard fields for specifying under what circumstances it will be processed. These
fields are listed in Scan Fields.

Desired Output Parameters

The data fanout record must specify where the desired output value originates, i.e., the data which is to be fowarded
to the records in its output links. The output mode select (OMSL) field determines whether the output originates from
another record or from run-time database access. When set to closed_loop, the desired output is retrieved from the
link specified in the Desired Output Link (DOL) field, which can specify either a database or a channel access link, and
placed into the VAL field. When set to supervisory, the desired output can be written to the VAL field via dbPuts at
run-time.

The DOL field can also be a constant in which case the VAL field is initialized to the constant value.

Note that there are no conversion parameters, so the desired output value undergoes no conversions before it is sent out
to the output links.

Field Summary Type DCT Default Read Write CA PP
DOL Desired Output Link INLINK Yes Yes Yes No

OMSL Output Mode Select MENU menuOmsl Yes Yes Yes No

VAL Desired Output DOUBLE Yes Yes Yes Yes

1.5. EPICS Record Types 135

EPICS Documentation Sandbox

Write Parameters

The OUTA-OUTH fields specify where VAL is to be sent. Each field that is to forward data must specify an address
to another record. See Address Specification for information on specifying links.

The SELL, SELM, and SELN fields specify which output links are to be used.

Menu dfanoutSELM

SELM is a menu, with three choices:

Index Identifier Choice String
0 dfanoutSELM_All All
1 dfanoutSELM_Specified Specified
2 dfanoutSELM_Mask Mask

If SELM is All, then all output links are used, and the values of SELL and SELN are ignored.

If SELM is Specified, then the value of SELN is used to specify a single link which will be used. If SELN==0, then
no link will be used; if SELN==1, then OUTA will be used, and so on.

SELN can either have its value set directly, or have it retrieved from another EPICS PV. If SELL is a valid PV link,
then SELN will be read from the linked PV.

If SELM is Mask, then SELN will be treated as a bit mask. If bit zero (the LSB) of SELN is set, then OUTA will be
written to; if bit one is set, OUTB will be written to, and so on. Thus when SELN==5, both OUTC and OUTA will be
written to.

Field Summary Type DCT Default Read Write CA PP
SELL Link Selection Loc INLINK Yes Yes Yes No

SELM Select Mechanism MENU dfanoutSELM Yes Yes Yes No

SELN Link Selection USHORT No 1 Yes Yes No
OUTA Output Spec A OUTLINK Yes Yes Yes No

OUTB Output Spec B OUTLINK Yes Yes Yes No

OUTC Output Spec C OUTLINK Yes Yes Yes No

OUTD Output Spec D OUTLINK Yes Yes Yes No

OUTE Output Spec E OUTLINK Yes Yes Yes No

OUTF Output Spec F OUTLINK Yes Yes Yes No

OUTG Output Spec G OUTLINK Yes Yes Yes No

OUTH Output Spec H OUTLINK Yes Yes Yes No

136 Chapter 1. EPICS Record Reference Manual

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#address-specification

EPICS Documentation Sandbox

Operator Display Parameters

These parameters are used to present meaningful data to the operator. They do not affect the functioning of the record
at all.

• NAME is the record’s name, and can be useful when the PV name that a client knows is an alias for the record.

• DESC is a string that is usually used to briefly describe the record.

• EGU is a string of up to 16 characters naming the engineering units that the VAL field represents.

• The HOPR and LOPR fields set the upper and lower display limits for the VAL, HIHI, HIGH, LOW, and LOLO
fields.

• The PREC field determines the floating point precision (i.e. the number of digits to show after the decimal point)
with which to display VAL and the other DOUBLE fields.

See Fields Common to All Record Types for more about the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

EGU Engineering Units STRING [16] Yes Yes Yes No

HOPR High Operating Range DOUBLE Yes Yes Yes No

LOPR Low Operating Range DOUBLE Yes Yes Yes No

PREC Display Precision SHORT Yes Yes Yes No

Alarm Parameters

The possible alarm conditions for data fanouts are the SCAN, READ, INVALID, and limit alarms. The SCAN and
READ alarms are called by the record routines. The limit alarms are configured by the user in the HIHI, LOLO, HIGH,
and LOW fields using floating point values. The limit alarms apply only to the VAL field. The severity for each of these
limits is specified in the corresponding field (HHSV, LLSV, HSV, LSV) and can be either NO_ALARM, MINOR, or
MAJOR. In the hysteresis field (HYST) can be entered a number which serves as the deadband on the limit alarms.

See Alarm Specification for a complete explanation of record alarms and of the standard fields. Alarm Fields lists other
fields related to alarms that are common to all record types.

1.5. EPICS Record Types 137

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#alarm-specification

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
HIHI Hihi Alarm Limit DOUBLE Yes Yes Yes Yes

HIGH High Alarm Limit DOUBLE Yes Yes Yes Yes

LOW Low Alarm Limit DOUBLE Yes Yes Yes Yes

LOLO Lolo Alarm Limit DOUBLE Yes Yes Yes Yes

HHSV Hihi Severity MENU menuAlarmSevr Yes Yes Yes Yes

HSV High Severity MENU menuAlarmSevr Yes Yes Yes Yes

LSV Low Severity MENU menuAlarmSevr Yes Yes Yes Yes

LLSV Lolo Severity MENU menuAlarmSevr Yes Yes Yes Yes

HYST Alarm Deadband DOUBLE Yes Yes Yes No

Monitor Parameters

These parameters are used to determine when to send monitors placed on the VAL field. These monitors are sent when
the value field exceeds the last monitored fields by the specified deadband, ADEL for archivers monitors and MDEL for
all other types of monitors. If these fields have a value of zero, everytime the value changes, a monitor will be triggered;
if they have a value of -1, everytime the record is scanned, monitors are triggered. See “Monitor Specification” for a
complete explanation of monitors.

Field Summary Type DCT Default Read Write CA PP
ADEL Archive Deadband DOUBLE Yes Yes Yes No

MDEL Monitor Deadband DOUBLE Yes Yes Yes No

Run-Time Parameters and Simulation Mode Parameters

These parameters are used by the run-time code for processing the data fanout record. Ther are not configurable. They
are used to implement the hysteresis factors for monitor callbacks.

Field Summary Type DCT Default Read Write CA PP
LALM Last Value Alarmed DOUBLE No Yes No No

ALST Last Value Archived DOUBLE No Yes No No

MLST Last Val Monitored DOUBLE No Yes No No

138 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Record Support

Record Support Routines

init_record()

This routine initializes all output links that are defined. Then it initializes DOL if DOL is a constant or a PV_LINK.
When initializing the output links and the DOL link, a non-zero value is returned if an error occurs.

process()

See next section.

get_units()

The routine copies the string specified in the EGU field to the location specified by a pointer which is passed to the
routine.

get_graphic_double()

If the referenced field is VAL, HIHI, HIGH, LOW, or LOLO, this routine sets the upper_disp_limit member of the
dbr_grDouble structure to the HOPR and the lower_disp_limit member to the LOPR. If the referenced field is
not one of the above fields, then recGblGetControlDouble() routine is called.

get_control_double()

Same as the get_graphic_double() routine except that it uses the dbr_ctrlDouble structure.

get_alarm_double()

This sets the members of the dbr_alDouble structure to the specified alarm limits when the referenced field is VAL:

upper_alarm_limit = HIHI

upper_warning_limit = HIGH

lower_warning_limit = LOW

lower_alarm_limit = LOLO

If the referenced field is not VAL, the recGblGetAlarmDouble() routine is called.

Record Processing

• 1.

The process() routine first checks that DOL is not a constant link and that OMSL is set to “closed_loop”. If so, it
retrieves a value through DOL and places it into VAL. If no errors occur, UDF is set to FALSE.

• 2.

PACT is set TRUE, and the record’s timestamp is set.

• 3.

1.5. EPICS Record Types 139

EPICS Documentation Sandbox

A value is fetched from SELL and placed into SELN.

• 4.

Alarms ranges are checked against the contents of the VAL field.

• 5.

VAL is then sent through the OUTA-OUTH links by calling dbPutLink() for each link, conditional on the setting of
SELM and the value in SELN.

• 6.

Value and archive monitors are posted on the VAL field if appropriate based on the settings of MDEL and ADEL
respectively.

• 7.

The data fanout’s forward link FLNK is processed.

• 6.

PACT is set FALSE, and the process() routine returns.

1.5.12 Event Record (event)

The normal use for this record type is to post an event and/or process a forward link. Device support for this record can
provide a hardware interrupt handler routine for I/O Event-scanned records.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The event record has the standard fields for specifying under what circumstances it will be processed. These fields are
described in Scan Fields.

Field Summary Type DCT Default Read Write CA PP
SCAN Scan Mechanism MENU menuScan Yes Yes Yes No

PHAS Scan Phase SHORT Yes Yes Yes No

EVNT Event Name STRING [40] Yes Yes Yes No

PRIO Scheduling Priority MENU menuPriority Yes Yes Yes No

PINI Process at iocInit MENU menuPini Yes Yes Yes No

140 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Event Number Parameters

The VAL field contains the event number read by the device support routines. It is this number which is posted. For
records that use Soft Channel device support, it can be configured before run-time or set via dbPuts.

Field Summary Type DCT Default Read Write CA PP
VAL Event Name To Post STRING [40] Yes Yes Yes No

Input Specification

The device support routines use the address in this record to obtain input. For records that provide an interrupt handler,
the INP field should specify the address of the I/O card, and the DTYP field should specify a valid device support
module. Be aware that the address format differs according to the card type used. See Address Specification for
information on the format of hardware addresses and specifying links.

For soft records, the INP field can be a constant, a database link, or a channel access link. For soft records, the DTYP
field should specify Soft Channel.

Field Summary Type DCT Default Read Write CA PP
INP Input Specification INLINK Yes Yes Yes No

DTYP Device Type DEVICE Yes Yes Yes No

Operator Display Parameters

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Alarm Parameters

The Event record has the alarm parameters common to all record types. Alarm Fields lists other fields related to alarms
that are common to all record types.

1.5. EPICS Record Types 141

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#address-specification

EPICS Documentation Sandbox

Simulation Mode Parameters

The following fields are used to operate the event record in the simulation mode. See “Fields Common to Many Record
Types” for more information on these fields.

Field Summary Type DCT Default Read Write CA PP
SIOL Sim Input Specifctn INLINK Yes Yes Yes No

SVAL Simulation Value STRING [40] No Yes Yes No

SIML Sim Mode Location INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuYesNo No Yes Yes No

SIMS Sim mode Alarm Svrty MENU menuAlarmSevr Yes Yes Yes No

Record Support

Record Support Routines

init_record

This routine initializes SIMM with the value of SIML if SIML type is a CONSTANT link or creates a channel access
link if SIML type is PV_LINK. SVAL is likewise initialized if SIOL is CONSTANT or PV_LINK.

If device support includes init_record(), it is called.

process

See next section.

Record Processing

Routine process implements the following algorithm:

1. readValue is called. See “Input Records” for more information.

2. If PACT has been changed to TRUE, the device support read routine has started but has not completed reading
a new input value. In this case, the processing routine merely returns, leaving PACT TRUE.

3. If VAL > 0, post event number VAL.

4. Check to see if monitors should be invoked. Alarm monitors are invoked if the alarm status or severity has chanet
to 0.

5. Scan forward link if necessary, set PACT FALSE, and return.

142 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Device Support

Fields of Interest To Device Support

Each record must have an associated set of device support routines. The device support routines are primarily interested
in the following fields:

Field Summary Type DCT Default Read Write CA PP
PACT Record active UCHAR No Yes No No

DPVT Device Private NOACCESS No No No No

UDF Undefined UCHAR Yes 1 Yes Yes Yes
NSEV New Alarm Severity MENU menuAlarmSevr No Yes No No

NSTA New Alarm Status MENU menuAlarmStat No Yes No No

INP Input Specification INLINK Yes Yes Yes No

PRIO Scheduling Priority MENU menuPriority Yes Yes Yes No

Device Support Routines

Device support consists of the following routines:

long report(int level)

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

long init(int after)

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

init_record

init_record(precord)

This routine is optional. If provided, it is called by the record support init_record() routine.

1.5. EPICS Record Types 143

EPICS Documentation Sandbox

get_ioint_info

get_ioint_info(int cmd, struct dbCommon *precord, IOSCANPVT *ppvt)

This routine is called by the ioEventScan system each time the record is added or deleted from an I/O event scan list.
cmd has the value (0,1) if the record is being (added to, deleted from) an I/O event list. It must be provided for any
device type that can use the ioEvent scanner.

read_event

read_event(precord)

This routine returns the following values:

• 0: Success.

• Other: Error.

Device Support For Soft Records

The Soft Channel device support module is available. The INP link type must be either CONSTANT, DB_LINK,
or CA_LINK.

If the INP link type is CONSTANT, then the constant value is stored into VAL by init_record(), and UDF is set to
FALSE. If the INP link type is PV_LINK, then dbCaAddInlink is called by init_record().

read_event calls recGblGetLinkValue to read the current value of VAL. See “Input Records” for details on soft input.

1.5.13 Fanout Record (fanout)

The fanout record uses several forward processing links to force multiple passive records to scan. When more than one
record needs to be scanned as the result of a record being processed, the forward link of that record can specify a fanout
record. The fanout record can specify up to sixteen other records to process. If more than sixteen are needed, one of
the forward links in the fanout record (or its FLNK field) can point to another fanout record.

NOTE: Fanout records only propagate processing, not data. The dfanout or Data Fanout record can, on the other
hand, send data to other records.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

144 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Scan Parameters

The forward link fields of the fanout record (LNK0-LNK9, LNKA-LNKF) specify records to be scanned. The records
to be processed must specify Passive in their SCAN fields; otherwise the forward link will not cause them to process.
Also when specifying database links for the fanout record, the user needs only to specify the record name. As no value
is being sent or retrieved, a field name is only required when the link will be over Channel Access, in which case the
field PROC must be named.

The SELM, SELN, and SELL fields specify the order of processing for the forward links. The select mechanism menu
field (SELM) has three choices:

Index Identifier Choice String
0 fanoutSELM_All All
1 fanoutSELM_Specified Specified
2 fanoutSELM_Mask Mask

How the SELM value affects which links to process and in which order is as follows:

• All Links are processed in numerical order - LNK0, LNK1, etc.

• Specified The sum of the values in the SELN and OFFS fields is used as the specifier of which link to process.
For instance, with OFFS=0 and SELN=1, the record targeted by LNK1 will be processed.

• Mask The individual bits in SELN are shifted by SHFT bits (negative means shift left) and the result used to
select which links to process as follows:

– If bit 0 (LSB) is set, LNK0 is processed.

– If bit 1 is set, LNK2 is processed.

– If bit 2 is set, LNK3 is processed, etc.

SELN reads its value from SELL. SELL can be a constant, a database link, or a channel access link. If a constant,
SELN is initialized with the constant value and can be changed via dbPuts. For database/channel access links, SELN
is retrieved from SELL each time the record is processed and can also be changed via dbPuts.

The Fanout record also has the standard scanning fields common to all records. These fields are listed in Scan Fields.

1.5. EPICS Record Types 145

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
SELM Select Mechanism MENU fanoutSELM Yes Yes Yes No

SELN Link Selection USHORT No 1 Yes Yes No
SELL Link Selection Loc INLINK Yes Yes Yes No

OFFS Offset for Specified SHORT Yes Yes Yes No

SHFT Shift for Mask mode SHORT Yes -1 Yes Yes No
LNK0 Forward Link 0 FWDLINK Yes Yes Yes No

LNK1 Forward Link 1 FWDLINK Yes Yes Yes No

LNK2 Forward Link 2 FWDLINK Yes Yes Yes No

LNK3 Forward Link 3 FWDLINK Yes Yes Yes No

LNK4 Forward Link 4 FWDLINK Yes Yes Yes No

LNK5 Forward Link 5 FWDLINK Yes Yes Yes No

LNK6 Forward Link 6 FWDLINK Yes Yes Yes No

LNK7 Forward Link 7 FWDLINK Yes Yes Yes No

LNK8 Forward Link 8 FWDLINK Yes Yes Yes No

LNK9 Forward Link 9 FWDLINK Yes Yes Yes No

LNKA Forward Link 10 FWDLINK Yes Yes Yes No

LNKB Forward Link 11 FWDLINK Yes Yes Yes No

LNKC Forward Link 12 FWDLINK Yes Yes Yes No

LNKD Forward Link 13 FWDLINK Yes Yes Yes No

LNKE Forward Link 14 FWDLINK Yes Yes Yes No

LNKF Forward Link 15 FWDLINK Yes Yes Yes No

146 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Operator Display Parameters

These parameters are used to present meaningful data to the operator. See Fields Common to All Record Types for more
on these fields.

Field Summary Type DCT Default Read Write CA PP
NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Alarm Parameters

The Fanout record has the alarm parameters common to all record types. Alarm Fields lists the fields related to alarms
that are common to all record types.

Run-time Parameters

The VAL field performs no specific function, but a Channel Access put to it will cause the record to process.

Field Summary Type DCT Default Read Write CA PP
VAL Used to trigger LONG No Yes Yes Yes

Record Support

Record Support Routines

init_record

This routine initializes SELN with the value of SELL, if SELL type is CONSTANT link, or creates a channel access
link if SELL type is PV_LINK.

process

See next section.

Record Processing

Routine process implements the following algorithm:

1. PACT is set to TRUE.

2. The link selection SELN is fetched.

3. Depending on the selection mechanism, the link selection forward links are processed, and UDF is set to FALSE.

4. Check to see if monitors should be invoked:

• Alarm monitors are invoked if the alarm status or severity has changed.

1.5. EPICS Record Types 147

EPICS Documentation Sandbox

• NSEV and NSTA are reset to 0.

5. Scan forward link field FLNK if used, set PACT FALSE, and return.

1.5.14 Histogram Record (histogram)

The histogram record is used to store frequency counts of a signal into an array of arbitrary length. The user can
configure the range of the signal value that the array will store. Anything outside this range will be ignored.

Parameter Fields

The record-specific fields are described below.

Read Parameters

The SVL is the input link where the record reads its value. It can be a constant, a database link, or a channel access
link. If SVL is a database or channel access link, then SGNL is read from SVL. If SVL is a constant, then SGNL is
initialized with the constant value but can be changed via dbPuts. The Soft Channel device support module can be
specified in the DTYP field.

The ULIM and LLIM fields determine the usable range of signal values. Any value of SGNL below LLIM or above
ULIM is outside the range and will not be stored in the array. In the NELM field the user must specify the array size,
e.g., the number of array elements. Each element in the NELM field holds the counts for an interval of the range of
signal counts, the range specified by ULIM and LLIM. These intervals are determined by dividing the range by NELM:

(ULIM - LLIM) / NELM.

Field Summary Type DCT Default Read Write CA PP
SVL Signal Value Location INLINK Yes Yes Yes No

SGNL Signal Value DOUBLE No Yes Yes No

DTYP Device Type DEVICE Yes Yes Yes No

NELM Num of Array Elements USHORT Yes 1 Yes No No
ULIM Upper Signal Limit DOUBLE Yes Yes Yes No

LLIM Lower Signal Limit DOUBLE Yes Yes Yes No

Operator Display Parameters

These parameters are used to present meaningful data to the operator. These fields are used to display the value and
other parameters of the histogram either textually or graphically. See Fields Common to All Record Types for more on
the record name (NAME) and description (DESC) fields.

148 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Alarm Parameters

The Histogram record has the alarm parameters common to all record types. Alarm Fields lists the fields related to
alarms that are common to all record types.

Monitor Parameters

The MDEL field implements the monitor count deadband. Only when MCNT is greater than the value given to MDEL
are monitors triggered, MCNT being the number of counts since the last time the record was processed. If MDEL is
-1, everytime the record is processed, a monitor is triggered regardless.

If SDEL is greater than 0, it causes a callback routine to be called. The number specified in SDEL is the callback
routines interval. The callback routine is called every SDEL seconds. The callback routine posts an event if MCNT is
greater than 0.

Field Summary Type DCT Default Read Write CA PP
MDEL Monitor Count Deadband SHORT Yes Yes Yes No

SDEL Monitor Seconds Dband DOUBLE Yes Yes Yes No

Run-time and Simulation Mode Parameters

These parameters are used by the run-time code for processing the histogram. They are not configurable by the user
prior to run-time. They represent the current state of the record. Many of them are used to process the histogram more
efficiently.

The BPTR field contains a pointer to the unsigned long array of frequency values. The VAL field references this array
as well. However, the BPTR field is not accessible at run-time.

The MCNT field keeps counts the number of signal counts since the last monitor was invoked.

The collections controls field (CMD) is a menu field with five choices:

Index Identifier Choice String
0 histogramCMD_Read Read
1 histogramCMD_Clear Clear
2 histogramCMD_Start Start
3 histogramCMD_Stop Stop

When CMD is Read, the record retrieves its values and adds them to the signal array. This command will first clear
the signal counts which have already been read when it is first invoked.

The Clear command erases the signal counts, setting the elements in the array back to zero. Afterwards, the CMD
field is set back to Read.

1.5. EPICS Record Types 149

EPICS Documentation Sandbox

The Start command simply causes the record to read signal values into the array. Unlike Read, it doesn’t clear the
array first.

The Stop command disables the reading of signal values into the array.

The Setup command waits until the start or read command has been issued to start counting.

The CSTA or collections status field implements the CMD field choices by enabling or disabling the reading of values
into the histogram array. While FALSE, no signals are added to the array. While TRUE, signals are read and added to
the array. The field is initialized to TRUE. The Stop command is the only command that sets CSTA to FALSE. On
the other hand, the Start command is the only command that sets it to TRUE. Thus, Start must be invoked after
each Stop command in order to enable counting; invoking Read will not enable signal counting after Stop has been
invoked.

A typical use of these fields would be to initialize the CMD field to Read (it is initialized to this command by default),
to use the Stop command to disable counting when necessary, after which the Start command can be invoked to
re-start the signal count.

The WDTH field is a private field that holds the signal width of the array elements. For instance, if the LLIM was
configured to be 4.0 and ULIM was configured to be 12.0 and the NELM was set to 4, then the WDTH for each array
would be 2. Thus, it is (ULIM - LLIM) / NELM.

Field Summary Type DCT Default Read Write CA PP
BPTR Buffer Pointer NOACCESS No No No No

VAL Value ULONG[] No Yes Yes No

MCNT Counts Since Monitor SHORT No Yes No No

CMD Collection Control MENU histogramCMD No Yes Yes No

CSTA Collection Status SHORT No 1 Yes No No
WDTH Element Width DOUBLE No Yes No No

The following fields are used to operate the histogram record in simulation mode. See “Fields Common to Many Record
Types” for more information on the simulation mode fields.

Field Summary Type DCT Default Read Write CA PP
SIOL Simulation Input Link INLINK Yes Yes Yes No

SVAL Simulation Value DOUBLE No Yes Yes No

SIML Simulation Mode Link INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuYesNo No Yes Yes No

SIMS Simulation Mode Severity MENU menuAlarmSevr Yes Yes Yes No

150 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Record Support

Record Support Routines

init_record

Using NELM, space for the unsigned long array is allocated and the width WDTH of the array is calculated.

This routine initializes SIMM with the value of SIML if SIML type is CONSTANT link or creates a channel access
link if SIML type is PV_LINK. SVAL is likewise initialized if SIOL is CONSTANT or PV_LINK.

This routine next checks to see that device support and a device support read routine are available. If device support
includes init_record(), it is called.

process

See next section.

special

Special is invoked whenever the fields CMD, SGNL, ULIM, or LLIM are changed.

If SGNL is changed, add_count is called.

If ULIM or LLIM are changed, WDTH is recalculated and clear_histogram is called.

If CMD is less or equal to 1, clear_histogram is called and CMD is reset to 0. If CMD is 2, CSTA is set to TRUE and
CMD is reset to 0. If CMD is 3, CSTA is set to FALSE and CMD is reset to 0.

clear_histogram zeros out the histogram array. add_count increments the frequency in the histogram array.

cvt_dbaddr

This is called by dbNameToAddr. It makes the dbAddr structure refer to the actual buffer holding the array.

get_array_info

Obtains values from the array referenced by VAL.

put_array_info

Writes values into the array referenced by VAL.

1.5. EPICS Record Types 151

EPICS Documentation Sandbox

Record Processing

Routine process implements the following algorithm:

1. Check to see that the appropriate device support module exists. If it doesn’t, an error message is issued and
processing is terminated with the PACT field set to TRUE. This ensures that processes will no longer be called
for this record. Thus error storms will not occur.

2. readValue is called. See “Input Records” for more information

3. If PACT has been changed to TRUE, the device support read routine has started but has not completed writing
the new value. In this case, the processing routine merely returns, leaving PACT TRUE.

4. Add count to histogram array.

5. Check to see if monitors should be invoked. Alarm monitors are invoked if the alarm status or severity has
changed. Archive and value change monitors are invoked if MDEL conditions are met. NSEV and NSTA are
reset to 0.

6. Scan forward link if necessary, set PACT and INIT to FALSE, and return.

Device Support

Fields Of Interest To Device Support

The device support routines are primarily interested in the following fields:

Field Summary Type DCT Default Read Write CA PP
PACT Record active UCHAR No Yes No No

DPVT Device Private NOACCESS No No No No

UDF Undefined UCHAR Yes 1 Yes Yes Yes
NSEV New Alarm Severity MENU menuAlarmSevr No Yes No No

NSTA New Alarm Status MENU menuAlarmStat No Yes No No

SVL Signal Value Location INLINK Yes Yes Yes No

SGNL Signal Value DOUBLE No Yes Yes No

Device Support Routines

Device support consists of the following routines:

152 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

long report(int level)

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

long init(int after)

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

init_record

init_record(precord)

This routine is called by the record support init_record() routine. It makes sure that SGNL is a CONSTANT,
PV_LINK, DB_LINK, or CA_LINK. It also retrieves a value for SVL from SGNL. If SGNL is none of the above, an
error is generated.

read_histogram

read_histogram(*precord)

This routine is called by the record support routines. It retrieves a value for SVL from SGNL.

Device Support For Soft Records

Only the device support module Soft Channel is currently provided, though other device support modules may be
provided at the user’s site.

Soft Channel

The Soft Channel device support routine retrieves a value from SGNL. SGNL must be CONSTANT, PV_LINK,
DB_LINK, or CA_LINK.

1.5.15 64bit Integer Input Record (int64in)

This record type is normally used to obtain an integer value of up to 64 bits from a hardware input. The record supports
alarm limits, alarm filtering, graphics and control limits.

1.5. EPICS Record Types 153

EPICS Documentation Sandbox

Parameter Fields

The record-specific fields are described below.

Input Specification

These fields control where the record will read data from when it is processed:

Field Summary Type DCT Default Read Write CA PP
DTYP Device Type DEVICE Yes Yes Yes No

INP Input Specification INLINK Yes Yes Yes No

The DTYP field selects which device support layer should be responsible for providing input data to the record. The
int64in device support layers provided by EPICS Base are documented in the “Device Support” section. External
support modules may provide additional device support for this record type. If not set explicitly, the DTYP value
defaults to the first device support that is loaded for the record type, which will usually be the Soft Channel support
that comes with Base.

The INP link field contains a database or channel access link or provides hardware address information that the device
support uses to determine where the input data should come from.

Operator Display Parameters

These parameters are used to present meaningful data to the operator. They do not affect the functioning of the record.

• DESC is a string that is usually used to briefly describe the record.

• EGU is a string of up to 16 characters naming the engineering units that the VAL field represents.

• The HOPR and LOPR fields set the upper and lower display limits for the VAL, HIHI, HIGH, LOW, and LOLO
fields.

Field Summary Type DCT Default Read Write CA PP
DESC Descriptor STRING [41] Yes Yes Yes No

EGU Units name STRING [16] Yes Yes Yes No

HOPR High Operating Range INT64 Yes Yes Yes No

LOPR Low Operating Range INT64 Yes Yes Yes No

154 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Alarm Limits

The user configures limit alarms by putting numerical values into the HIHI, HIGH, LOW and LOLO fields, and by
setting the associated alarm severity in the corresponding HHSV, HSV, LSV and LLSV menu fields.

The HYST field controls hysteresis to prevent alarm chattering from an input signal that is close to one of the limits
and suffers from significant readout noise.

The AFTC field sets the time constant on a low-pass filter that delays the reporting of limit alarms until the signal has
been within the alarm range for that number of seconds (the default AFTC value of zero retains the previous behavior).

The LALM field is used by the record at run-time to implement the alarm limit functionality.

Field Summary Type DCT Default Read Write CA PP
HIHI Hihi Alarm Limit INT64 Yes Yes Yes Yes

HIGH High Alarm Limit INT64 Yes Yes Yes Yes

LOW Low Alarm Limit INT64 Yes Yes Yes Yes

LOLO Lolo Alarm Limit INT64 Yes Yes Yes Yes

HHSV Hihi Severity MENU menuAlarmSevr Yes Yes Yes Yes

HSV High Severity MENU menuAlarmSevr Yes Yes Yes Yes

LSV Low Severity MENU menuAlarmSevr Yes Yes Yes Yes

LLSV Lolo Severity MENU menuAlarmSevr Yes Yes Yes Yes

HYST Alarm Deadband INT64 Yes Yes Yes No

AFTC Alarm Filter Time Constant DOUBLE Yes Yes Yes No

LALM Last Value Alarmed INT64 No Yes No No

Monitor Parameters

These parameters are used to determine when to send monitors placed on the VAL field. The monitors are sent when
the current value exceeds the last transmitted value by the appropriate deadband. If these fields are set to zero, a monitor
will be triggered every time the value changes; if set to -1, a monitor will be sent every time the record is processed.

The ADEL field sets the deadband for archive monitors (DBE_LOG events), while the MDEL field controls value mon-
itors (DBE_VALUE events).

The remaining fields are used by the record at run-time to implement the record monitoring deadband functionality.

1.5. EPICS Record Types 155

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
ADEL Archive Deadband INT64 Yes Yes Yes No

MDEL Monitor Deadband INT64 Yes Yes Yes No

ALST Last Value Archived INT64 No Yes No No

MLST Last Val Monitored INT64 No Yes No No

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML) is YES, the record is put in SIMS severity and the value is fetched through SIOL
(buffered in SVAL). SSCN sets a different SCAN mechanism to use in simulation mode. SDLY sets a delay (in sec)
that is used for asynchronous simulation processing.

See Input Simulation Fields for more information on simulation mode and its fields.

Field Summary Type DCT Default Read Write CA PP
SIML Simulation Mode Link INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuYesNo No Yes Yes No

SIOL Simulation Input Link INLINK Yes Yes Yes No

SVAL Simulation Value INT64 No Yes Yes No

SIMS Simulation Mode Severity MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

Record Support

Record Support Routines

The following are the record support routines that would be of interest to an application developer. Other routines are
the get_units, get_graphic_double, get_alarm_double and get_control_double routines, which are used
to collect properties from the record for the complex DBR data structures.

156 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

init_record

This routine first initializes the simulation mode mechanism by setting SIMM if SIML is a constant, and setting SVAL
if SIOL is a constant.

It then checks if the device support and the device support’s read_int64in routine are defined. If either one does not
exist, an error message is issued and processing is terminated.

If device support includes init_record, it is called.

Finally, the deadband mechanisms for monitors and level alarms are initialized.

process

See next section.

Record Processing

Routine process implements the following algorithm:

1. Check to see that the appropriate device support module and its read_int64in routine are defined. If either
one does not exist, an error message is issued and processing is terminated with the PACT field set to TRUE,
effectively blocking the record to avoid error storms.

2. Determine the value:

If PACT is TRUE, call the device support read_int64in routine and return.

If PACT is FALSE, read the value, honoring simulation mode:

• Get SIMM by reading the SIML link.

• If SIMM is NO, call the device support read_int64in routine and return.

• If SIMM is YES, then

– Set alarm status to SIMM_ALARM and severity to SIMS, if SIMS is greater than zero.

– If the record simulation processing is synchronous (SDLY < 0) or the record is in the second phase
of an asynchronous processing, call dbGetLink() to read the input value from SIOL into SVAL. Set
status to the return code from dbGetLink(). If the call succeeded, write the value to VAL and set
UDF to 0.

Otherwise (record is in first phase of an asynchronous processing), set up a callback processing with
the delay specified in SDLY.

• Raise an alarm for other values of SIMM.

3. If PACT has been changed to TRUE, the device support signals asynchronous processing: its read_int64in
output routine has started, but not completed reading the new value. In this case, the processing routine merely
returns, leaving PACT TRUE.

4. Set PACT to TRUE. Get the processing time stamp. Set UDF to 0 if reading the value was successful.

5. Check UDF and level alarms: This routine checks to see if the record is undefined (UDF is TRUE) or if the new
VAL causes the alarm status and severity to change. In the latter case, NSEV, NSTA and LALM are set. It also
honors the alarm hysteresis factor (HYST): the value must change by at least HYST between level alarm status
and severity changes. If AFTC is set, alarm level filtering is applied.

6. Check to see if monitors should be invoked:

1.5. EPICS Record Types 157

EPICS Documentation Sandbox

• Alarm monitors are posted if the alarm status or severity have changed.

• Archive and value change monitors are posted if ADEL and MDEL conditions (see “Monitor Parameters”)
are met.

7. Scan (process) forward link if necessary, set PACT to FALSE, and return.

Device Support

Device Support Interface

The record requires device support to provide an entry table (dset) which defines the following members:

typedef struct {
long number;
long (*report)(int level);
long (*init)(int after);
long (*init_record)(int64inRecord *prec);
long (*get_ioint_info)(int cmd, int64inRecord *prec, IOSCANPVT *piosl);
long (*read_int64in)(int64inRecord *prec);

} int64indset;

The module must set number to at least 5, and provide a pointer to its read_int64in() routine; the other function
pointers may be NULL if their associated functionality is not required for this support layer. Most device supports also
provide an init_record() routine to configure the record instance and connect it to the hardware or driver support
layer.

The individual routines are described below.

Device Support Routines

long report(int level)

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

long init(int after)

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

158 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

long init_record(int64inRecord *prec)

This optional routine is called by the record initialization code for each int64in record instance that has its DTYP field
set to use this device support. It is normally used to check that the INP address is the expected type and that it points
to a valid device; to allocate any record-specific buffer space and other memory; and to connect any communication
channels needed for the read_int64in() routine to work properly.

long get_ioint_info(int cmd, int64inRecord *prec, IOSCANPVT *piosl)

This optional routine is called whenever the record’s SCAN field is being changed to or from the value I/O Intr to
find out which I/O Interrupt Scan list the record should be added to or deleted from. If this routine is not provided, it
will not be possible to set the SCAN field to the value I/O Intr at all.

The cmd parameter is zero when the record is being added to the scan list, and one when it is being removed from the
list. The routine must determine which interrupt source the record should be connected to, which it indicates by the
scan list that it points the location at *piosl to before returning. It can prevent the SCAN field from being changed at
all by returning a non-zero value to its caller.

In most cases the device support will create the I/O Interrupt Scan lists that it returns for itself, by calling void
scanIoInit(IOSCANPVT *piosl) once for each separate interrupt source. That routine allocates memory and inial-
izes the list, then passes back a pointer to the new list in the location at *piosl.

When the device support receives notification that the interrupt has occurred, it announces that to the IOC by calling
void scanIoRequest(IOSCANPVT iosl)which will arrange for the appropriate records to be processed in a suitable
thread. The scanIoRequest() routine is safe to call from an interrupt service routine on embedded architectures
(vxWorks and RTEMS).

long read_int64in(int64inRecord *prec)

This essential routine is called when the record wants a new value from the addressed device. It is responsible for
performing (or at least initiating) a read operation, and (eventually) returning its value to the record.

If the device may take more than a few microseconds to return the new value, this routine must never block (busy-
wait), but use the asynchronous processing mechanism. In that case it signals the asynchronous operation by setting
the record’s PACT field to TRUE before it returns, having arranged for the record’s process() routine to be called
later once the read operation is finished. When that happens, the read_int64in() routine will be called again with
PACT still set to TRUE; it should then set it to FALSE to indicate the read has completed, and return.

A return value of zero indicates success, any other value indicates that an error occurred.

Extended Device Support

. . .

1.5. EPICS Record Types 159

EPICS Documentation Sandbox

Device Support For Soft Records

Two soft device support modules, Soft Channel and Soft Callback Channel, are provided for input records not related
to actual hardware devices. The INP link type must be either a CONSTANT, DB_LINK, or CA_LINK.

Soft Channel

This module reads the value using the record’s INP link.

read_int64in calls dbGetLink to read the value.

Soft Callback Channel

This module is like the previous except that it reads the value using asynchronous processing that will not complete
until an asynchronous processing of the INP target record has completed.

1.5.16 64bit Integer Output Record (int64out)

This record type is normally used to send an integer value of up to 64 bits to an output device. The record supports
alarm, drive, graphics and control limits.

Parameter Fields

The record-specific fields are described below.

Output Value Determination

These fields control how the record determines the value to be output when it gets processed:

Field Summary Type DCT Default Read Write CA PP
OMSL Output Mode Select MENU menuOmsl Yes Yes Yes No

DOL Desired Output Link INLINK Yes Yes Yes No

DRVH Drive High Limit INT64 Yes Yes Yes Yes

DRVL Drive Low Limit INT64 Yes Yes Yes Yes

VAL Desired Output INT64 Yes Yes Yes Yes

The following steps are performed in order during record processing.

160 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Fetch Value

The OMSL menu field is used to determine whether the DOL link field should be used during processing or not:

• If OMSL is supervisory the DOL link field is not used. The new output value is taken from the VAL field,
which may have been set from elsewhere.

• If OMSL is closed_loop the DOL link field is used to obtain a value.

Drive Limits

The output value is clipped to the range DRVL to DRVH inclusive, provided that DRVH > DRVL. The result is copied
into the VAL field.

Output Specification

These fields control where the record will read data from when it is processed:

Field Summary Type DCT Default Read Write CA PP
DTYP Device Type DEVICE Yes Yes Yes No

OUT Output Specification OUTLINK Yes Yes Yes No

The DTYP field selects which device support layer should be responsible for writing output data. The int64out device
support layers provided by EPICS Base are documented in the “Device Support” section. External support modules
may provide additional device support for this record type. If not set explicitly, the DTYP value defaults to the first
device support that is loaded for the record type, which will usually be the Soft Channel support that comes with
Base.

The OUT link field contains a database or channel access link or provides hardware address information that the device
support uses to determine where the output data should be sent to.

Operator Display Parameters

These parameters are used to present meaningful data to the operator. They do not affect the functioning of the record.

• DESC is a string that is usually used to briefly describe the record.

• EGU is a string of up to 16 characters naming the engineering units that the VAL field represents.

• The HOPR and LOPR fields set the upper and lower display limits for the VAL, HIHI, HIGH, LOW, and LOLO
fields.

Field Summary Type DCT Default Read Write CA PP
DESC Descriptor STRING [41] Yes Yes Yes No

EGU Units name STRING [16] Yes Yes Yes No

HOPR High Operating Range INT64 Yes Yes Yes No

LOPR Low Operating Range INT64 Yes Yes Yes No

1.5. EPICS Record Types 161

EPICS Documentation Sandbox

Alarm Limits

The user configures limit alarms by putting numerical values into the HIHI, HIGH, LOW and LOLO fields, and by
setting the associated alarm severities in the corresponding HHSV, HSV, LSV and LLSV menu fields.

The HYST field controls hysteresis to prevent alarm chattering from an input signal that is close to one of the limits
and suffers from significant readout noise.

The LALM field is used by the record at run-time to implement the alarm limit hysteresis functionality.

Field Summary Type DCT Default Read Write CA PP
HIHI Hihi Alarm Limit INT64 Yes Yes Yes Yes

HIGH High Alarm Limit INT64 Yes Yes Yes Yes

LOW Low Alarm Limit INT64 Yes Yes Yes Yes

LOLO Lolo Alarm Limit INT64 Yes Yes Yes Yes

HHSV Hihi Severity MENU menuAlarmSevr Yes Yes Yes Yes

HSV High Severity MENU menuAlarmSevr Yes Yes Yes Yes

LSV Low Severity MENU menuAlarmSevr Yes Yes Yes Yes

LLSV Lolo Severity MENU menuAlarmSevr Yes Yes Yes Yes

HYST Alarm Deadband INT64 Yes Yes Yes No

LALM Last Value Alarmed INT64 No Yes No No

Monitor Parameters

These parameters are used to determine when to send monitors placed on the VAL field. The monitors are sent when
the current value exceeds the last transmitted value by the appropriate deadband. If these fields are set to zero, a monitor
will be triggered every time the value changes; if set to -1, a monitor will be sent every time the record is processed.

The ADEL field sets the deadband for archive monitors (DBE_LOG events), while the MDEL field controls value mon-
itors (DBE_VALUE events).

The remaining fields are used by the record at run-time to implement the record monitoring deadband functionality.

Field Summary Type DCT Default Read Write CA PP
ADEL Archive Deadband INT64 Yes Yes Yes No

MDEL Monitor Deadband INT64 Yes Yes Yes No

ALST Last Value Archived INT64 No Yes No No

MLST Last Val Monitored INT64 No Yes No No

162 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML) is YES, the record is put in SIMS severity and the value is written through SIOL.
SSCN sets a different SCAN mechanism to use in simulation mode. SDLY sets a delay (in sec) that is used for asyn-
chronous simulation processing.

See Output Simulation Fields for more information on simulation mode and its fields.

Field Summary Type DCT Default Read Write CA PP
SIML Simulation Mode Link INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuYesNo No Yes Yes No

SIOL Simulation Output Link OUTLINK Yes Yes Yes No

SIMS Simulation Mode Severity MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

Invalid Alarm Output Action

Whenever an output record is put into INVALID alarm severity, IVOA specifies the action to take.

• Continue normally (default)

Write the value. Same as if severity is lower than INVALID.

• Don't drive outputs

Do not write value.

• Set output to IVOV

Set VAL to IVOV, then write the value.

Field Summary Type DCT Default Read Write CA PP
IVOA INVALID output action MENU menuIvoa Yes Yes Yes No

IVOV INVALID output value INT64 Yes Yes Yes No

Record Support

Record Support Routines

The following are the record support routines that would be of interest to an application developer. Other routines are
the get_units, get_graphic_double, get_alarm_double and get_control_double routines, which are used
to collect properties from the record for the complex DBR data structures.

1.5. EPICS Record Types 163

EPICS Documentation Sandbox

init_record

This routine first initializes the simulation mode mechanism by setting SIMM if SIML is a constant.

It then checks if the device support and the device support’s write_int64out routine are defined. If either one does
not exist, an error message is issued and processing is terminated.

If DOL is a constant, then VAL is initialized with its value and UDF is set to FALSE.

If device support includes init_record, it is called.

Finally, the deadband mechanisms for monitors and level alarms are initialized.

process

See next section.

Record Processing

Routine process implements the following algorithm:

1. Check to see that the appropriate device support module and its write_int64out routine are defined. If either
one does not exist, an error message is issued and processing is terminated with the PACT field set to TRUE,
effectively blocking the record to avoid error storms.

2. Check PACT. If PACT is FALSE, do the following:

• Determine value, honoring closed loop mode: if DOL is not a CONSTANT and OMSL is CLOSED_LOOP
then get value from DOL setting UDF to FALSE in case of success, else use the VAL field.

• Call convert: if drive limits are defined then force value to be within those limits.

3. Check UDF and level alarms: This routine checks to see if the record is undefined (UDF is TRUE) or if the new
VAL causes the alarm status and severity to change. In the latter case, NSEV, NSTA and LALM are set. It also
honors the alarm hysteresis factor (HYST): the value must change by at least HYST between level alarm status
and severity changes.

4. Check severity and write the new value. See Invalid Output Action Fields for details on how invalid alarms affect
output records.

5. If PACT has been changed to TRUE, the device support signals asynchronous processing: its write_int64out
output routine has started, but not completed writing the new value. In this case, the processing routine merely
returns, leaving PACT TRUE.

6. Check to see if monitors should be invoked:

• Alarm monitors are posted if the alarm status or severity have changed.

• Archive and value change monitors are posted if ADEL and MDEL conditions (see “Monitor Parameters”)
are met.

• NSEV and NSTA are reset to 0.

7. Scan (process) forward link if necessary, set PACT to FALSE, and return.

164 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Device Support

Device Support Interface

The record requires device support to provide an entry table (dset) which defines the following members:

typedef struct {
long number;
long (*report)(int level);
long (*init)(int after);
long (*init_record)(int64outRecord *prec);
long (*get_ioint_info)(int cmd, int64outRecord *prec, IOSCANPVT *piosl);
long (*write_int64out)(int64outRecord *prec);

} int64outdset;

The module must set number to at least 5, and provide a pointer to its write_int64out() routine; the other function
pointers may be NULL if their associated functionality is not required for this support layer. Most device supports also
provide an init_record() routine to configure the record instance and connect it to the hardware or driver support
layer.

The individual routines are described below.

Device Support Routines

long report(int level)

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

long init(int after)

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

long init_record(int64outRecord *prec)

This optional routine is called by the record initialization code for each int64out record instance that has its DTYP field
set to use this device support. It is normally used to check that the OUT address is the expected type and that it points
to a valid device, to allocate any record-specific buffer space and other memory, and to connect any communication
channels needed for the write_int64out() routine to work properly.

1.5. EPICS Record Types 165

EPICS Documentation Sandbox

long get_ioint_info(int cmd, int64outRecord *prec, IOSCANPVT *piosl)

This optional routine is called whenever the record’s SCAN field is being changed to or from the value I/O Intr to
find out which I/O Interrupt Scan list the record should be added to or deleted from. If this routine is not provided, it
will not be possible to set the SCAN field to the value I/O Intr at all.

The cmd parameter is zero when the record is being added to the scan list, and one when it is being removed from the
list. The routine must determine which interrupt source the record should be connected to, which it indicates by the
scan list that it points the location at *piosl to before returning. It can prevent the SCAN field from being changed at
all by returning a non-zero value to its caller.

In most cases the device support will create the I/O Interrupt Scan lists that it returns for itself, by calling void
scanIoInit(IOSCANPVT *piosl) once for each separate interrupt source. That routine allocates memory and inial-
izes the list, then passes back a pointer to the new list in the location at *piosl.

When the device support receives notification that the interrupt has occurred, it announces that to the IOC by calling
void scanIoRequest(IOSCANPVT iosl)which will arrange for the appropriate records to be processed in a suitable
thread. The scanIoRequest() routine is safe to call from an interrupt service routine on embedded architectures
(vxWorks and RTEMS).

long write_int64out(int64outRecord *prec)

This essential routine is called when the record wants to write a new value to the addressed device. It is responsible for
performing (or at least initiating) a write operation, using the value from the record’s VAL field.

If the device may take more than a few microseconds to accept the new value, this routine must never block (busy-
wait), but use the asynchronous processing mechanism. In that case it signals the asynchronous operation by setting
the record’s PACT field to TRUE before it returns, having arranged for the record’s process() routine to be called
later once the write operation is over. When that happens, the write_int64out() routine will be called again with
PACT still set to TRUE; it should then set it to FALSE to indicate the write has completed, and return.

A return value of zero indicates success, any other value indicates that an error occurred.

Extended Device Support

. . .

Device Support For Soft Records

Two soft device support modules, Soft Channel and Soft Callback Channel, are provided for output records not related
to actual hardware devices. The OUT link type must be either a CONSTANT, DB_LINK, or CA_LINK.

Soft Channel

This module writes the current value using the record’s VAL field.

write_int64out calls dbPutLink to write the current value.

166 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Soft Callback Channel

This module is like the previous except that it writes the current value using asynchronous processing that will not
complete until an asynchronous processing of the target record has completed.

1.5.17 Long Input Record (longin)

The normal use for the long input record or “longin” record is to retrieve a long integer value of up to 32 bits. Device
support routines are provided to support direct interfaces to hardware. In addition, the Soft Channel device module
is provided to obtain input via database or channel access links or via dbPutField or dbPutLink requests.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The long input record has the standard fields for specifying under what circumstances the record will be processed.
These fields are listed in Scan Fields.

Read Parameters

The device support routines use the INP field to obtain the record’s input. For records that obtain their input from
devices, the INP field must contain the address of the I/O card, and the DTYP field must specify the proper device
support module. Be aware that the address format differs according to the I/O bus used.

For soft records, the INP can be a constant, a database link, or a channel access link. The value is read directly into
VAL. The Soft Channel device support module is available for longin records.

Field Summary Type DCT Default Read Write CA PP
VAL Current value LONG Yes Yes Yes Yes

INP Input Specification INLINK Yes Yes Yes No

DTYP Device Type DEVICE Yes Yes Yes No

Operator Display Parameters

These parameters are used to present meaningful data to the operator. These fields are used to display the value and
other parameters of the long input either textually or graphically.

EGU is a string of up to 16 characters describing the units that the long input measures. It is retrieved by the get_units
record support routine.

The HOPR and LOPR fields set the upper and lower display limits for the VAL, HIHI, HIGH, LOW, and LOLO fields.
Both the get_graphic_double and get_control_double record support routines retrieve these fields.

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

1.5. EPICS Record Types 167

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
EGU Engineering Units STRING [16] Yes Yes Yes No

HOPR High Operating Range LONG Yes Yes Yes No

LOPR Low Operating Range LONG Yes Yes Yes No

NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Alarm Parameters

The possible alarm conditions for long inputs are the SCAN, READ, and limit alarms. The SCAN and READ alarms
are called by the record or device support routines.

The limit alarms are configured by the user in the HIHI, LOLO, HIGH, and LOW fields using numerical values. For
each of these fields, there is a corresponding severity field which can be either NO_ALARM, MINOR, or MAJOR.
The HYST field can be used to specify a deadband around each limit. Alarm Fields lists the fields related to alarms
that are common to all record types.

Field Summary Type DCT Default Read Write CA PP
HIHI Hihi Alarm Limit LONG Yes Yes Yes Yes

HIGH High Alarm Limit LONG Yes Yes Yes Yes

LOW Low Alarm Limit LONG Yes Yes Yes Yes

LOLO Lolo Alarm Limit LONG Yes Yes Yes Yes

HHSV Hihi Severity MENU menuAlarmSevr Yes Yes Yes Yes

HSV High Severity MENU menuAlarmSevr Yes Yes Yes Yes

LSV Low Severity MENU menuAlarmSevr Yes Yes Yes Yes

LLSV Lolo Severity MENU menuAlarmSevr Yes Yes Yes Yes

HYST Alarm Deadband LONG Yes Yes Yes No

168 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Monitor Parameters

These parameters are used to determine when to send monitors placed on the value field. The monitors are sent when
the value field exceeds the last monitored field (see the next section) by the appropriate deadband. If these fields have a
value of zero, everytime the value changes, a monitor will be triggered; if they have a value of -1, everytime the record
is scanned, monitors are triggered. The ADEL field is used by archive monitors and the MDEL field for all other types
of monitors.

Field Summary Type DCT Default Read Write CA PP
ADEL Archive Deadband LONG Yes Yes Yes No

MDEL Monitor Deadband LONG Yes Yes Yes No

Run-time Parameters

The LALM, MLST, and ALST fields are used to implement the hysteresis factors for monitor callbacks. Only if the
difference between these fields and the corresponding value field is greater than the appropriate delta (MDEL, ADEL,
HYST) will monitors be triggered. For instance, only if the difference between VAL and MLST is greater than MDEL
are the monitors triggered for VAL.

Field Summary Type DCT Default Read Write CA PP
LALM Last Value Alarmed LONG No Yes No No

ALST Last Value Archived LONG No Yes No No

MLST Last Val Monitored LONG No Yes No No

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML) is YES, the record is put in SIMS severity and the value is fetched through SIOL
(buffered in SVAL). SSCN sets a different SCAN mechanism to use in simulation mode. SDLY sets a delay (in sec)
that is used for asynchronous simulation processing.

See Input Simulation Fields for more information on simulation mode and its fields.

1.5. EPICS Record Types 169

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
SIML Sim Mode Location INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuYesNo No Yes Yes No

SIOL Sim Input Specifctn INLINK Yes Yes Yes No

SVAL Simulation Value LONG No Yes Yes No

SIMS Sim mode Alarm Svrty MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

Record Support

Record Support Routines

init_record

This routine initializes SIMM with the value of SIML if SIML type is CONSTANT link or creates a channel access
link if SIML type is PV_LINK. SVAL is likewise initialized if SIOL is CONSTANT or PV_LINK.

This routine next checks to see that device support is available and a device support read routine is defined. If either
does not exist, an error message is issued and processing is terminated.

If device support includes init_record(), it is called.

process

See next section.

get_units

Retrieves EGU.

get_graphic_double

Sets the upper display and lower display limits for a field. If the field is VAL, HIHI, HIGH, LOW, or LOLO, the limits
are set to HOPR and LOPR, else if the field has upper and lower limits defined they will be used, else the upper and
lower maximum values for the field type will be used.

170 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

get_control_double

Sets the upper control and the lower control limits for a field. If the field is VAL, HIHI, HIGH, LOW, or LOLO, the
limits are set to HOPR and LOPR, else if the field has upper and lower limits defined they will be used, else the upper
and lower maximum values for the field type will be used.

get_alarm_double

Sets the following values:

upper_alarm_limit = HIHI
upper_warning_limit = HIGH
lower_warning_limit = LOW
lower_alarm_limit = LOLO

Record Processing

Routine process implements the following algorithm:

1. Check to see that the appropriate device support module exists. If it doesn’t, an error message is issued and
processing is terminated with the PACT field still set to TRUE. This ensures that processes will no longer be
called for this record. Thus error storms will not occur.

2. readValue is called. See “Input Records” for more information.

3. If PACT has been changed to TRUE, the device support read routine has started but has not completed reading
a new input value. In this case, the processing routine merely returns, leaving PACT TRUE.

4. Check alarms. This routine checks to see if the new VAL causes the alarm status and severity to change. If so,
NSEV, NSTA and LALM are set. It also honors the alarm hysteresis factor (HYST). Thus the value must change
by more than HYST before the alarm status and severity is lowered.

5. Check to see if monitors should be invoked:

• Alarm monitors are invoked if the alarm status or severity has changed.

• Archive and value change monitors are invoked if ADEL and MDEL conditions are met.

• NSEV and NSTA are reset to 0.

6. Scan forward link if necessary, set PACT FALSE, and return.

Device Support

Fields Of Interest To Device Support

Each long input record must have an associated set of device support routines. The primary responsibility of the device
support routines is to obtain a new input value whenever read_longin is called. The device support routines are primarily
interested in the following fields:

1.5. EPICS Record Types 171

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
PACT Record active UCHAR No Yes No No

DPVT Device Private NOACCESS No No No No

UDF Undefined UCHAR Yes 1 Yes Yes Yes
NSEV New Alarm Severity MENU menuAlarmSevr No Yes No No

NSTA New Alarm Status MENU menuAlarmStat No Yes No No

VAL Current value LONG Yes Yes Yes Yes

INP Input Specification INLINK Yes Yes Yes No

Device Support Routines

Device support consists of the following routines:

long report(int level)

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

long init(int after)

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

init_record

init_record(precord)

This routine is optional. If provided, it is called by the record support init_record() routine.

get_ioint_info

get_ioint_info(int cmd,struct dbCommon *precord,IOSCANPVT *ppvt)

This routine is called by the ioEventScan system each time the record is added or deleted from an I/O event scan list.
cmd has the value (0,1) if the record is being (added to, deleted from) an I/O event list. It must be provided for any
device type that can use the ioEvent scanner.

172 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

read_longin

read_longin(precord)

This routine must provide a new input value. It returns the following values:

• 0: Success. A new value is placed in VAL.

• Other: Error.

Device Support For Soft Records

The Soft Channel device support module places a value directly in VAL.

If the INP link type is constant, then the constant value is stored into VAL by init_record(), and UDF is set to
FALSE. If the INP link type is PV_LINK, then dbCaAddInlink is called by init_record().

read_longin calls recGblGetLinkValue to read the current value of VAL. See “Soft Input” for more information

If the return status of recGblGetLinkValue is zero then read_longin sets UDF to FALSE. read_longin returns the
status of recGblGetLinkValue.

1.5.18 Long Output Record (longout)

The normal use for the long output or “longout” record type is to store long integer values of up to 32 bits and write
them to hardware devices. The Soft Channel device support layer can also be used to write values to other records
via database or channel access links. The OUT field determines how the record is used. The record supports alarm
limits and graphics and control limits.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The longout record has the standard fields for specifying under what circumstances it will be processed. These fields
are listed in Scan Fields.

Desired Output Parameters

The record must specify where the desired output originates, i.e., the 32 bit integer value it is to write. The output mode
select (OMSL) field determines whether the output originates from another record or from database access. When set
to closed_loop, the desired output is retrieved from the link specified in the Desired Output Link (DOL) field (which
can specify either a database or channel access link) and placed into the VAL field. When set to supervisory, the
desired output can be written into the VAL field via dpPuts at run-time.

A third type of value for the DOL field is a constant in which case, when the record is initialized, the VAL field will be
initialized with this constant value.

The VAL field’s value will be clipped within limits specified in the fields DRVH and DRVL if these have been configured
by the database designer:

1.5. EPICS Record Types 173

EPICS Documentation Sandbox

DRVL <= VAL <= DRVH

Note: These limits are only enforced as long as DRVH > DRVL. If they are not set or DRVH <= DRVL they will not
be used.

Field Summary Type DCT Default Read Write CA PP
DOL Desired Output Link INLINK Yes Yes Yes No

OMSL Output Mode Select MENU menuOmsl Yes Yes Yes No

DRVH Drive High Limit LONG Yes Yes Yes Yes

DRVL Drive Low Limit LONG Yes Yes Yes Yes

VAL Desired Output LONG Yes Yes Yes Yes

Write Parameters

The OUT link field determines where the record is to send its output. For records that write values to hardware devices,
the OUT output link field must specify the address of the I/O card, and the DTYP field must specify the name of the
corresponding device support module.

For soft records, the OUT output link can be a constant, a database link, or a channel access link. If the link is a
constant, the result is no output. The DTYP field must then specify the Soft Channel device support routine.

See Address Specification for information on the format of hardware addresses and database links.

Field Summary Type DCT Default Read Write CA PP
OUT Output Specification OUTLINK Yes Yes Yes No

DTYP Device Type DEVICE Yes Yes Yes No

Operator Display Parameters

These parameters are used to present meaningful data to the operator. They display the value and other parameters of
the long output either textually or graphically.

EGU is a string of up to 16 characters describing the units that the long output measures. It is retrieved by the
get_units record support routine.

The HOPR and LOPR fields set the upper and lower display limits for the VAL, HIHI, HIGH, LOW, and LOLO fields.
Both the get_graphic_double and get_control_double record support routines retrieve these fields.

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

174 Chapter 1. EPICS Record Reference Manual

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#address-specification

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
EGU Engineering Units STRING [16] Yes Yes Yes No

HOPR High Operating Range LONG Yes Yes Yes No

LOPR Low Operating Range LONG Yes Yes Yes No

NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Alarm Parameters

The possible alarm conditions for long inputs are the SCAN, READ, INVALID, and limit alarms. The SCAN and
READ alarms are not configurable by the user because their severity is always MAJOR. The INVALID alarm is called
by the record support routine when the record or device support routines cannot write the record’s output. The IVOA
field specifies the action to take in this case.

The limit alarms are configured by the user in the HIHI, LOLO, HIGH, and LOW fields using floating-point values.
For each of these fields, there is a corresponding severity field which can be either NO_ALARM, MINOR, or MAJOR.

The HYST field sets an alarm deadband around each limit alarm.

For an explanation of the IVOA and IVOV fields, see Invalid Output Action Fields.

See Alarm Specification for a complete explanation of record alarms and of the standard fields. Alarm Fields lists other
fields related to alarms that are common to all record types.

Field Summary Type DCT Default Read Write CA PP
HIHI Hihi Alarm Limit LONG Yes Yes Yes Yes

HIGH High Alarm Limit LONG Yes Yes Yes Yes

LOW Low Alarm Limit LONG Yes Yes Yes Yes

LOLO Lolo Alarm Limit LONG Yes Yes Yes Yes

HHSV Hihi Severity MENU menuAlarmSevr Yes Yes Yes Yes

HSV High Severity MENU menuAlarmSevr Yes Yes Yes Yes

LSV Low Severity MENU menuAlarmSevr Yes Yes Yes Yes

LLSV Lolo Severity MENU menuAlarmSevr Yes Yes Yes Yes

HYST Alarm Deadband LONG Yes Yes Yes No

IVOA INVALID output action MENU menuIvoa Yes Yes Yes No

IVOV INVALID output value LONG Yes Yes Yes No

1.5. EPICS Record Types 175

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#alarm-specification

EPICS Documentation Sandbox

Monitor Parameters

These parameters are used to determine when to send monitors placed on the value field. The monitors are sent when
the value field exceeds the last monitored field by the appropriate delta. If these fields have a value of zero, everytime
the value changes, a monitor will be triggered; if they have a value of -1, everytime the record is scanned, monitors
are triggered. The ADEL field is the delta for archive monitors, and the MDEL field is the delta for all other types of
monitors. See “Monitor Specification” for a complete explanation of monitors.

Field Summary Type DCT Default Read Write CA PP
ADEL Archive Deadband LONG Yes Yes Yes No

MDEL Monitor Deadband LONG Yes Yes Yes No

Run-time Parameters

The LALM, MLST, and ALST fields are used to implement the hysteresis factors for monitor callbacks. Only if the
difference between these fields and the corresponding value field is greater than the appropriate delta (MDEL, ADEL,
HYST)–only then are monitors triggered. For instance, only if the difference between VAL and MLST is greater than
MDEL are the monitors triggered for VAL.

Field Summary Type DCT Default Read Write CA PP
LALM Last Value Alarmed LONG No Yes No No

ALST Last Value Archived LONG No Yes No No

MLST Last Val Monitored LONG No Yes No No

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML) is YES, the record is put in SIMS severity and the value is written through SIOL.
SSCN sets a different SCAN mechanism to use in simulation mode. SDLY sets a delay (in sec) that is used for asyn-
chronous simulation processing.

See Output Simulation Fields for more information on simulation mode and its fields.

Field Summary Type DCT Default Read Write CA PP
SIML Sim Mode Location INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuYesNo No Yes Yes No

SIOL Sim Output Specifctn OUTLINK Yes Yes Yes No

SIMS Sim mode Alarm Svrty MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

176 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Record Support

Record Support Routines

init_record

This routine initializes SIMM if SIML is a constant or creates a channel access link if SIML is PV_LINK. If SIOL is
PV_LINK a channel access link is created.

This routine next checks to see that device support is available. The routine next checks to see if the device support
write routine is defined.

If either device support or the device support write routine does not exist, an error message is issued and processing is
terminated.

If DOL is a constant, then VAL is initialized to its value and UDF is set to FALSE. If DOL type is a PV_LINK then
dbCaAddInlink is called to create a channel access link.

If device support includes init_record(), it is called.

process

See next section.

get_units

Retrieves EGU.

get_graphic_double

Sets the upper display and lower display limits for a field. If the field is VAL, HIHI, HIGH, LOW, or LOLO, the limits
are set to HOPR and LOPR, else if the field has upper and lower limits defined they will be used, else the upper and
lower maximum values for the field type will be used.

get_control_double

Sets the upper control and the lower control limits for a field. If the field is VAL, HIHI, HIGH, LOW, or LOLO, the
limits are set to HOPR and LOPR, else if the field has upper and lower limits defined they will be used, else the upper
and lower maximum values for the field type will be used.

get_alarm_double

Sets the following values:

upper_alarm_limit = HIHI
upper_warning_limit = HIGH
lower_warning_limit = LOW
lower_alarm_limit = LOLO

1.5. EPICS Record Types 177

EPICS Documentation Sandbox

Record Processing

Routine process implements the following algorithm:

1. Check to see that the appropriate device support module exists. If it doesn’t, an error message is issued and
processing is terminated with the PACT field still set to TRUE. This ensures that processes will no longer be
called for this record. Thus error storms will not occur.

2. If PACT is FALSE and OMSL is CLOSED_LOOP recGblGetLinkValue is called to read the current value of
VAL. See “Output Records” for more information. If the return status of recGblGetLinkValue is zero then UDF
is set to FALSE.

3. Check alarms. This routine checks to see if the new VAL causes the alarm status and severity to change. If so,
NSEV, NSTA and LALM are set. It also honors the alarm hysteresis factor (HYST). Thus the value must change
by more than HYST before the alarm status and severity is lowered.

4. Check severity and write the new value. See Invalid Output Action Fields for information on how INVALID
alarms affect output records.

5. If PACT has been changed to TRUE, the device support write output routine has started but has not completed
writing the new value. In this case, the processing routine merely returns, leaving PACT TRUE.

6. Check to see if monitors should be invoked:

• Alarm monitors are invoked if the alarm status or severity has changed.

• Archive and value change monitors are invoked if ADEL and MDEL conditions are met.

• NSEV and NSTA are reset to 0.

7. Scan forward link if necessary, set PACT FALSE, and return.

Device Support

Fields Of Interest To Device Support

Each long output record must have an associated set of device support routines. The primary responsibility of the
device support routines is to output a new value whenever write_longout is called. The device support routines are
primarily interested in the following fields:

Field Summary Type DCT Default Read Write CA PP
PACT Record active UCHAR No Yes No No

DPVT Device Private NOACCESS No No No No

NSEV New Alarm Severity MENU menuAlarmSevr No Yes No No

NSTA New Alarm Status MENU menuAlarmStat No Yes No No

OUT Output Specification OUTLINK Yes Yes Yes No

178 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Device Support Routines

Device support consists of the following routines:

long report(int level)

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

long init(int after)

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

init_record

init_record(precord)

This routine is optional. If provided, it is called by the record support init_record() routine.

get_ioint_info

get_ioint_info(int cmd,struct dbCommon *precord,IOSCANPVT *ppvt)

This routine is called by the ioEventScan system each time the record is added or deleted from an I/O event scan list.
cmd has the value (0,1) if the record is being (added to, deleted from) an I/O event list. It must be provided for any
device type that can use the ioEvent scanner.

write_longout

write_longout(precord)

This routine must output a new value. It returns the following values:

• 0: Success.

• Other: Error.

1.5. EPICS Record Types 179

EPICS Documentation Sandbox

Device Support For Soft Records

The Soft Channel module writes the current value of VAL.

If the OUT link type is PV_LINK, then dbCaAddInlink is called by init_record().

write_longout calls recGblPutLinkValue to write the current value of VAL.

See “Soft Output” for a further explanation.

1.5.19 Long String Input Record (lsi)

The long string input record is used to retrieve an arbitrary ASCII string with a maximum length of 65535 characters.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The long string input record has the standard fields for specifying under what circumstances it will be processed. These
fields are listed in Scan Fields.

Input Specification

The INP field determines where the long string input record obtains its string from. It can be a database or channel
access link, or a constant. If constant, the VAL field is initialized with the constant and can be changed via dbPuts.
Otherwise, the string is read from the specified location each time the record is processed and placed in the VAL
field. The maximum number of characters in VAL is given by SIZV, and cannot be larger than 65535. In addition, the
appropriate device support module must be entered into the DTYP field.

Field Summary Type DCT Default Read Write CA PP
VAL Current Value STRING or CHAR[SIZV] No Yes Yes Yes

OVAL Old Value STRING or [SIZV] No Yes No No

SIZV Size of buffers USHORT Yes 41 Yes No No
INP Input Specification INLINK Yes Yes Yes No

DTYP Device Type DEVICE Yes Yes Yes No

180 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Monitor Parameters

These parameters are used to specify when the monitor post should be sent by the monitor() routine. There are two
possible choices:

APST is used for archiver monitors and MPST for all other type of monitors.

Field Summary Type DCT Default Read Write CA PP
MPST Post Value Monitors MENU menuPost Yes Yes Yes No

APST Post Archive Monitors MENU menuPost Yes Yes Yes No

Operator Display Parameters

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Alarm Parameters

The long string input record has the alarm parameters common to all record types. Alarm Fields lists the fields related
to alarms that are common to all record types.

Run-time Parameters

The old value field (OVAL) of the long string input record is used to implement value change monitors for VAL. If
VAL is not equal to OVAL, then monitors are triggered. LEN contains the length of the string in VAL, OLEN contains
the length of the string in OVAL.

Field Summary Type DCT Default Read Write CA PP
OVAL Old Value STRING or [SIZV] No Yes No No

LEN Length of VAL ULONG No Yes No No

OLEN Length of OVAL ULONG No Yes No No

1.5. EPICS Record Types 181

EPICS Documentation Sandbox

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML) is YES, the record is put in SIMS severity and the value is fetched through SIOL.
SSCN sets a different SCAN mechanism to use in simulation mode. SDLY sets a delay (in sec) that is used for asyn-
chronous simulation processing.

See Input Simulation Fields for more information on simulation mode and its fields.

Field Summary Type DCT Default Read Write CA PP
SIML Simulation Mode Link INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuYesNo No Yes Yes No

SIOL Simulation Input Link INLINK Yes Yes Yes No

SIMS Simulation Mode Severity MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

Device Support Interface

The record requires device support to provide an entry table (dset) which defines the following members:

typedef struct {
long number;
long (*report)(int level);
long (*init)(int after);
long (*init_record)(lsiRecord *prec);
long (*get_ioint_info)(int cmd, lsiRecord *prec, IOSCANPVT *piosl);
long (*read_string)(lsiRecord *prec);

} lsidset;

The module must set number to at least 5, and provide a pointer to its read_string() routine; the other function
pointers may be NULL if their associated functionality is not required for this support layer. Most device supports also
provide an init_record() routine to configure the record instance and connect it to the hardware or driver support
layer.

Device Support for Soft Records

A device support module for DTYP Soft Channel is provided for retrieving values from other records or other soft-
ware components.

Device support for DTYP getenv is provided for retrieving strings from environment variables. INST_IO addressing
@<environment variable> is used on the INP link field to select the desired environment variable.

182 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

1.5.20 Long String Output Record (lso)

The long string output record is used to write an arbitrary ASCII string with a maximum length of 65535 characters.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The long string output record has the standard fields for specifying under what circumstances it will be processed.
These fields are listed in Scan Fields.

Desired Output Parameters

The long string output record must specify from where it gets its desired output string. The first field that determines
where the desired output originates is the output mode select (OMSL) field, which can have two possible values:
closed_loop or supervisory. If closed_loop is specified, the VAL field’s value is fetched from the address
specified in the Desired Output Link field (DOL) which can be either a database link or a channel access link. If
supervisory is specified, DOL is ignored, the current value of VAL is written, and VAL can be changed externally
via dbPuts at run-time.

The maximum number of characters in VAL is given by SIZV, and cannot be larger than 65535.

DOL can also be a constant instead of a link, in which case VAL is initialized to the constant value. Most simple string
constants are likely to be interpreted as a CA link name though. To initialize a string output record it is simplest to set
the VAL field directly; alternatively use a JSON constant link type in the DOL field.

Field Summary Type DCT Default Read Write CA PP
VAL Current Value STRING or CHAR[SIZV] No Yes Yes Yes

SIZV Size of buffers USHORT Yes 41 Yes No No
DOL Desired Output Link INLINK Yes Yes Yes No

OMSL Output Mode Select MENU menuOmsl Yes Yes Yes No

Output Specification

The output link specified in the OUT field specifies where the long string output record is to write its string. The link
can be a database or channel access link. If the OUT field is a constant, no output will be written.

In addition, the appropriate device support module must be entered into the DTYP field.

Field Summary Type DCT Default Read Write CA PP
OUT Output Specification OUTLINK Yes Yes Yes No

DTYP Device Type DEVICE Yes Yes Yes No

1.5. EPICS Record Types 183

EPICS Documentation Sandbox

Monitor Parameters

These parameters are used to specify when the monitor post should be sent by the monitor() routine. There are two
possible choices:

APST is used for archiver monitors and MPST for all other type of monitors.

Field Summary Type DCT Default Read Write CA PP
MPST Post Value Monitors MENU menuPost Yes Yes Yes No

APST Post Archive Monitors MENU menuPost Yes Yes Yes No

Operator Display Parameters

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Alarm Parameters

The long string input record has the same alarm parameters common to all record types. Alarm Fields lists the fields
related to alarms that are common to all record types.

The IVOA field specifies an action to take when the INVALID alarm is triggered. When Set output to IVOV, the
value contained in the IVOV field is written to the output link during an alarm condition. See Invalid Output Action
Fields for more information on the IVOA and IVOV fields.

Field Summary Type DCT Default Read Write CA PP
IVOA INVALID Output Action MENU menuIvoa Yes Yes Yes No

IVOV INVALID Output Value STRING [40] Yes Yes Yes No

Run-time Parameters

The old value field (OVAL) of the long string input record is used to implement value change monitors for VAL. If
VAL is not equal to OVAL, then monitors are triggered. LEN contains the length of the string in VAL, OLEN contains
the length of the string in OVAL.

184 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
OVAL Previous Value STRING or [SIZV] No Yes No No

LEN Length of VAL ULONG No Yes No No

OLEN Length of OVAL ULONG No Yes No No

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML) is YES, the record is put in SIMS severity and the value is written through SIOL.
SSCN sets a different SCAN mechanism to use in simulation mode. SDLY sets a delay (in sec) that is used for asyn-
chronous simulation processing.

See Output Simulation Fields for more information on simulation mode and its fields.

Field Summary Type DCT Default Read Write CA PP
SIML Simulation Mode link INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuYesNo No Yes Yes No

SIOL Simulation Output Link OUTLINK Yes Yes Yes No

SIMS Simulation Mode Severity MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

Device Support Interface

The record defines a device support entry table type lsodset in the generated lsoRecord.h file as follows:

typedef struct lsodset {
dset common;
long (*write_string)(struct lsoRecord *prec);

} lsodset;
#define HAS_lsodset

The support module must set common.number to at least 5, and provide a pointer to its write_string() routine;
the other function pointers may be NULL if their associated functionality is not required for this support layer. Most
device supports also provide a common.init_record() routine to configure the record instance and connect it to the
hardware or driver support layer.

1.5. EPICS Record Types 185

EPICS Documentation Sandbox

Device Support for Soft Records

Device support for DTYP Soft Channel is provided for writing values to other records or other software components.

Device support for DTYP stdio is provided for writing values to the stdout, stderr, or errlog streams. INST_IO
addressing @stdout, @stderr or @errlog is used on the OUT link field to select the desired stream.

1.5.21 Multi-Bit Binary Input Direct Record (mbbiDirect)

The mbbiDirect record retrieves a 32-bit hardware value and converts it to an array of 32 unsigned characters, each
representing a bit of the word. These fields (B0-B9, BA-BF, B10-B19, B1A-B1F) are set to 1 if the corresponding bit
is set, and 0 if not.

This record’s operation is similar to that of the multi-bit binary input record, and it has many fields in common with
it. This record also has two available soft device support modules: Soft Channel and Raw Soft Channel.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The mbbiDirect record has the standard fields for specifying under what circumstances the record will be processed.
These fields are listed in Scan Fields.

Read and Convert Parameters

The device support routines obtain the record’s input from the device or link specified in the INP field. For records
that obtain their input from devices, the INP field must contain the address of the I/O card, and the DTYP field must
specify the proper device support module. Be aware that the address format differs according to the I/O bus used.

Two soft device support modules can be specified in DTYP Soft Channel and Raw Soft Channel.

Raw Soft Channel reads the value into RVAL, upon which the normal conversion process is undergone. Soft
Channel reads any unsigned integer directly into VAL. For a soft mbbiDirect record, the INP field can be a con-
stant, a database, or a channel access link. If INP is a constant, then the VAL is initialized to the INP value but can be
changed at run-time via dbPutField or dbPutLink.

For records that don’t use Soft Channel device support, RVAL is used to determine VAL as follows:

• 1. RVAL is assigned to a temporary variable rval = RVAL

• 2. rval is shifted right SHFT number of bits.

• 3. VAL is set equal to rval.

Each of the fields, B0-BF and B10-B1F, represents one bit of the word.

Field Summary Type DCT Default Read Write CA PP
VAL Current Value LONG Yes Yes Yes Yes
INP Input Specification INLINK Yes Yes Yes No
RVAL Raw Value ULONG No Yes Yes Yes
SHFT Shift USHORT Yes Yes Yes No

continues on next page

186 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Table 1 – continued from previous page
Field Summary Type DCT Default Read Write CA PP
B0 Bit 0 UCHAR No Yes Yes Yes
B1 Bit 1 UCHAR No Yes Yes Yes
B2 Bit 2 UCHAR No Yes Yes Yes
B3 Bit 3 UCHAR No Yes Yes Yes
B4 Bit 4 UCHAR No Yes Yes Yes
B5 Bit 5 UCHAR No Yes Yes Yes
B6 Bit 6 UCHAR No Yes Yes Yes
B7 Bit 7 UCHAR No Yes Yes Yes
B8 Bit 8 UCHAR No Yes Yes Yes
B9 Bit 9 UCHAR No Yes Yes Yes
BA Bit 10 UCHAR No Yes Yes Yes
BB Bit 11 UCHAR No Yes Yes Yes
BC Bit 12 UCHAR No Yes Yes Yes
BD Bit 13 UCHAR No Yes Yes Yes
BE Bit 14 UCHAR No Yes Yes Yes
BF Bit 15 UCHAR No Yes Yes Yes
B10 Bit 16 UCHAR No Yes Yes Yes
B11 Bit 17 UCHAR No Yes Yes Yes
B12 Bit 18 UCHAR No Yes Yes Yes
B13 Bit 19 UCHAR No Yes Yes Yes
B14 Bit 20 UCHAR No Yes Yes Yes
B15 Bit 21 UCHAR No Yes Yes Yes
B16 Bit 22 UCHAR No Yes Yes Yes
B17 Bit 23 UCHAR No Yes Yes Yes
B18 Bit 24 UCHAR No Yes Yes Yes
B19 Bit 25 UCHAR No Yes Yes Yes
B1A Bit 26 UCHAR No Yes Yes Yes
B1B Bit 27 UCHAR No Yes Yes Yes
B1C Bit 28 UCHAR No Yes Yes Yes
B1D Bit 29 UCHAR No Yes Yes Yes
B1E Bit 30 UCHAR No Yes Yes Yes
B1F Bit 31 UCHAR No Yes Yes Yes

Operator Display Parameters

These parameters are used to present meaningful data to the operator.

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

1.5. EPICS Record Types 187

EPICS Documentation Sandbox

Run-time Parameters

These parameters are used by the run-time code for processing the mbbi direct record. They are not configurable prior
to run-time.

MASK is used by device support routine to read hardware register. Record support sets low order NOBT bits in MASK.
Device support can shift this value.

MLST holds the value when the last monitor for value change was triggered.

Field Summary Type DCT Default Read Write CA PP
NOBT Number of Bits SHORT Yes Yes No No

ORAW Prev Raw Value ULONG No Yes No No

MASK Hardware Mask ULONG No Yes No No

MLST Last Value Monitored LONG No Yes No No

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML) is YES or RAW, the record is put in SIMS severity and the value is fetched through
SIOL (buffered in SVAL). If SIMM is YES, SVAL is written to VAL without conversion, if SIMM is RAW, SVAL is
trancated to RVAL and converted. SSCN sets a different SCAN mechanism to use in simulation mode. SDLY sets a
delay (in sec) that is used for asynchronous simulation processing.

See Input Simulation Fields for more information on simulation mode and its fields.

Field Summary Type DCT Default Read Write CA PP
SIML Simulation Mode Link INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuSimm No Yes Yes No

SIOL Simulation Input Link INLINK Yes Yes Yes No

SVAL Simulation Value LONG No Yes Yes No

SIMS Simulation Mode Severity MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

188 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Alarm Parameters

The possible alarm conditions for multi-bit binary input direct records are the SCAN and READ alarms. These alarms
are not configurable by the user since they are always of MAJOR severity. No fields exist for the mbbi direct record to
have state alarms.

Alarm Fields lists the fields related to alarms that are common to all record types.

Record Support

Record Support Routines

init_record

This routine initializes SIMM with the value of SIML if SIML type is CONSTANT link or creates a channel access
link if SIML type is PV_LINK. SVAL is likewise initialized if SIOL is CONSTANT or PV_LINK.

This routine next checks to see that device support is available and a device support read routine is defined. If either
does not exist, an error message is issued and processing is terminated.

Clears MASK and then sets the NOBT low order bits.

If device support includes init_record(), it is called.

refresh_bits is then called to refresh all the bit fields based on a hardware value.

process

See next section.

Record Processing

Routine process implements the following algorithm:

1. Check to see that the appropriate device support module exists. If it doesn’t, an error message is issued and
processing is terminated with the PACT field still set to TRUE. This ensures that processes will no longer be
called for this record. Thus error storms will not occur.

2. readValue is called. See “Output Records” for information.

3. If PACT has been changed to TRUE, the device support read routine has started but has not completed reading
a new input value. In this case, the processing routine merely returns, leaving PACT TRUE.

4. Convert.

• status = read_mbbiDirect

• PACT = TRUE

• recGblGetTimeStamp() is called.

• If status is 0, then determine VAL

– Set rval = RVAL

– Shift rval right SHFT bits

– Set VAL = RVAL

1.5. EPICS Record Types 189

EPICS Documentation Sandbox

• If status is 1, return 0

• If status is 2, set status = 0

5. Check to see if monitors should be invoked.

• Alarm monitors are invoked if the alarm status or severity has changed.

• Archive and value change monitors are invoked if MLST is not equal to VAL.

• Monitors for RVAL are checked whenever other monitors are invoked.

• NSEV and NSTA are reset to 0.

6. Scan forward link if necessary, set PACT FALSE, and return.

Device Support

Fields Of Interest To Device Support

Each input record must have an associated set of device support routines.

The primary responsibility of the device support routines is to obtain a new raw input value whenever read_mbbiDirect
is called. The device support routines are primarily interested in the following fields:

Field Summary Type DCT Default Read Write CA PP
PACT Record active UCHAR No Yes No No

DPVT Device Private NOACCESS No No No No

UDF Undefined UCHAR Yes 1 Yes Yes Yes
NSEV New Alarm Severity MENU menuAlarmSevr No Yes No No

NSTA New Alarm Status MENU menuAlarmStat No Yes No No

NOBT Number of Bits SHORT Yes Yes No No

VAL Current Value LONG Yes Yes Yes Yes

INP Input Specification INLINK Yes Yes Yes No

RVAL Raw Value ULONG No Yes Yes Yes

MASK Hardware Mask ULONG No Yes No No

SHFT Shift USHORT Yes Yes Yes No

190 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Device Support Routines

Device support consists of the following routines:

long report(int level)

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

long init(int after)

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

init_record

init_record(precord)

This routine is optional. If provided, it is called by the record support init_record() routine. If it uses MASK, it
should shift it as necessary and also give SHFT a value.

get_ioint_info

get_ioint_info(int cmd,struct dbCommon *precord,IOSCANPVT *ppvt)

This routine is called by the ioEventScan system each time the record is added or deleted from an I/O event scan list.
cmd has the value (0,1) if the record is being (added to, deleted from) an I/O event list. It must be provided for any
device type that can use the ioEvent scanner.

read_mbbiDirect

read_mbbiDirect(precord)

This routine must provide a new input value. It returns the following values:

• 0: Success. A new raw value is placed in RVAL. The record support module determines VAL from RVAL and
SHFT.

• 2: Success, but don’t modify VAL.

• Other: Error.

1.5. EPICS Record Types 191

EPICS Documentation Sandbox

Device Support For Soft Records

Two soft device support modules, Soft Channel and Raw Soft Channel, are provided for multi-bit binary input
direct records not related to actual hardware devices. The INP link type must be either CONSTANT, DB_LINK, or
CA_LINK.

Soft Channel

For this module, read_mbbiDirect always returns a value of 2, which means that no conversion is performed.

If the INP link type is constant, then the constant value is stored into VAL by init_record(), and UDF is set to
FALSE. VAL can be changed via dbPut requests. If the INP link type is PV_LINK, then dbCaAddInlink is called by
init_record().

read_mbbiDirect calls recGblGetLinkValue to read the current value of VAL.

See “Input Records” for a further explanation.

If the return status of recGblGetLinkValue is zero, then read_mbbi sets UDF to FALSE. The status of recG-
blGetLinkValue is returned.

Raw Soft Channel

This module is like the previous except that values are read into RVAL, VAL is computed from RVAL, and
read_mbbiDirect returns a value of 0. Thus the record processing routine will determine VAL in the normal way.

1.5.22 Multi-Bit Binary Input Record (mbbi)

The normal use for the multi-bit binary input record is to read contiguous, multiple bit inputs from hardware. The
binary value represents a state from a range of up to 16 states. The multi-bit input record interfaces with devices that
use more than one bit.

Most device support modules obtain values from hardware and place the value in RVAL. For these device support
modules record processing uses RVAL to determine the current state (VAL is given a value between 0 and 15). Device
support modules may optionally read a value directly into VAL.

Soft device modules are provided to obtain input via database or channel access links or via dbPutField or dbPutLink
requests. Two soft device support modules are provided: Soft Channel allows VAL to be an arbitrary unsigned short
integer. Raw Soft Channel reads the value into RVAL just like normal device support modules.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

192 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Scan Parameters

The multi-bit binary input record has the standard fields for specifying under what circumstances it will be processed.
These fields are listed in Scan Fields.

Read and Convert Parameters

The device support routines obtain the record’s input from the device or link specified in the INP field. For records
that obtain their input from devices, the INP field must contain the address of the I/O card, and the DTYP field must
specify the proper device support module. Be aware that the address format differs according to the I/O bus used.

Two soft device support modules can be specified in DTYP Soft Channel and Raw Soft Channel.

Raw Soft Channel reads the value into RVAL, upon which the normal conversion process is undergone. Soft
Channel reads any unsigned integer directly into VAL. For a soft mbbi record, the INP field can be a constant, a
database, or a channel access link. If INP is a constant, then the VAL is initialized to the constant value but can be
changed at run-time via dbPutField or dbPutLink.

MASK is used by the raw soft channel read routine, and by typical device support read routines, to select only the
desired bits when reading the hardware register. It is initialized to ((1 << NOBT) - 1) by record initialization. The user
can configure the NOBT field, but the device support routines may set it, in which case the value given to it by the user
is simply overridden. The device support routines may also override MASK or shift it left by SHFT bits. If MASK is
non-zero, only the bits specified by MASK will appear in RVAL.

Unless the device support routine specifies no conversion, RVAL is used to determine VAL as follows:

1. RVAL is assigned to a temporary variable – rval = RVAL

2. rval is shifted right SHFT number of bits.

3. A match is sought between rval and one of the state value fields, ZRVL-FFVL.

Each of the fields, ZRVL-FFVL, represents one of the possible sixteen states (not all sixteen have to be used).

Alternatively, the input value can be read as a string, in which case, a match is sought with one of the strings specified
in the ZRST-FFST fields. Then RVAL is set equal to the corresponding value for that string, and the conversion process
occurs.

1.5. EPICS Record Types 193

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
VAL Current Value ENUM Yes Yes Yes Yes

INP Input Specification INLINK Yes Yes Yes No

MASK Hardware Mask ULONG No Yes No No

NOBT Number of Bits USHORT Yes Yes No No

RVAL Raw Value ULONG No Yes Yes Yes

SHFT Shift USHORT Yes Yes Yes No

ZRVL Zero Value ULONG Yes Yes Yes Yes

ONVL One Value ULONG Yes Yes Yes Yes

TWVL Two Value ULONG Yes Yes Yes Yes

THVL Three Value ULONG Yes Yes Yes Yes

FRVL Four Value ULONG Yes Yes Yes Yes

FVVL Five Value ULONG Yes Yes Yes Yes

SXVL Six Value ULONG Yes Yes Yes Yes

SVVL Seven Value ULONG Yes Yes Yes Yes

EIVL Eight Value ULONG Yes Yes Yes Yes

NIVL Nine Value ULONG Yes Yes Yes Yes

TEVL Ten Value ULONG Yes Yes Yes Yes

ELVL Eleven Value ULONG Yes Yes Yes Yes

TVVL Twelve Value ULONG Yes Yes Yes Yes

TTVL Thirteen Value ULONG Yes Yes Yes Yes

FTVL Fourteen Value ULONG Yes Yes Yes Yes

FFVL Fifteen Value ULONG Yes Yes Yes Yes

194 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Operator Display Parameters

These parameters are used to present meaningful data to the operator. They display the value and other parameters of
the mbbi record either textually or graphically. The ZRST-FFST fields contain strings describing one of the possible
states of the record. The get_enum_str and get_enum_strs record routines retrieve these strings for the operator.
Get_enum_str gets the string corresponding to the value set in VAL, and get_enum_strs retrieves all the strings.

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

ZRST Zero String STRING [26] Yes Yes Yes Yes

ONST One String STRING [26] Yes Yes Yes Yes

TWST Two String STRING [26] Yes Yes Yes Yes

THST Three String STRING [26] Yes Yes Yes Yes

FRST Four String STRING [26] Yes Yes Yes Yes

FVST Five String STRING [26] Yes Yes Yes Yes

SXST Six String STRING [26] Yes Yes Yes Yes

SVST Seven String STRING [26] Yes Yes Yes Yes

EIST Eight String STRING [26] Yes Yes Yes Yes

NIST Nine String STRING [26] Yes Yes Yes Yes

TEST Ten String STRING [26] Yes Yes Yes Yes

ELST Eleven String STRING [26] Yes Yes Yes Yes

TVST Twelve String STRING [26] Yes Yes Yes Yes

TTST Thirteen String STRING [26] Yes Yes Yes Yes

FTST Fourteen String STRING [26] Yes Yes Yes Yes

FFST Fifteen String STRING [26] Yes Yes Yes Yes

1.5. EPICS Record Types 195

EPICS Documentation Sandbox

Alarm Parameters

The possible alarm conditions for multi-bit binary inputs are the SCAN, READ, and state alarms. The state alarms are
configured in the below severity fields. These fields have the usual possible values for severity fields: NO_ALARM,
MINOR, and MAJOR.

The unknown state severity (UNSV) field, if set to MINOR or MAJOR, triggers an alarm when the record support
routine cannot find a matching value in the state value fields for rval.

The change of state severity (COSV) field triggers an alarm when any change of state occurs, if set to MAJOR or
MINOR.

The other fields, when set to MAJOR or MINOR, trigger an alarm when VAL equals the corresponding state.

See Alarm Specification for a complete explanation of record alarms and of the standard fields. Alarm Fields lists other
fields related to alarms that are common to all record types.

Field Summary Type DCT Default Read Write CA PP
UNSV Unknown State Severity MENU menuAlarmSevr Yes Yes Yes Yes

COSV Change of State Svr MENU menuAlarmSevr Yes Yes Yes Yes

ZRSV State Zero Severity MENU menuAlarmSevr Yes Yes Yes Yes

ONSV State One Severity MENU menuAlarmSevr Yes Yes Yes Yes

TWSV State Two Severity MENU menuAlarmSevr Yes Yes Yes Yes

THSV State Three Severity MENU menuAlarmSevr Yes Yes Yes Yes

FRSV State Four Severity MENU menuAlarmSevr Yes Yes Yes Yes

FVSV State Five Severity MENU menuAlarmSevr Yes Yes Yes Yes

SXSV State Six Severity MENU menuAlarmSevr Yes Yes Yes Yes

SVSV State Seven Severity MENU menuAlarmSevr Yes Yes Yes Yes

EISV State Eight Severity MENU menuAlarmSevr Yes Yes Yes Yes

NISV State Nine Severity MENU menuAlarmSevr Yes Yes Yes Yes

TESV State Ten Severity MENU menuAlarmSevr Yes Yes Yes Yes

ELSV State Eleven Severity MENU menuAlarmSevr Yes Yes Yes Yes

TVSV State Twelve Severity MENU menuAlarmSevr Yes Yes Yes Yes

TTSV State Thirteen Sevr MENU menuAlarmSevr Yes Yes Yes Yes

FTSV State Fourteen Sevr MENU menuAlarmSevr Yes Yes Yes Yes

FFSV State Fifteen Severity MENU menuAlarmSevr Yes Yes Yes Yes

196 Chapter 1. EPICS Record Reference Manual

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#alarm-specification

EPICS Documentation Sandbox

Run-time Parameters

These parameters are used by the run-time code for processing the multi-bit binary input.

ORAW is used by record processing to hold the prior RVAL for use in determining when to post a monitor event for
the RVAL field.

The LALM field implements the change of state alarm severity by holding the value of VAL when the previous change
of state alarm was issued.

MLST holds the value when the last monitor for value change was triggered.

SDEF is used by record support to save time if no states are defined.

Field Summary Type DCT Default Read Write CA PP
ORAW Prev Raw Value ULONG No Yes No No

LALM Last Value Alarmed USHORT No Yes No No

MLST Last Value Monitored USHORT No Yes No No

SDEF States Defined SHORT No Yes No No

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML) is YES or RAW, the record is put in SIMS severity and the value is fetched through
SIOL (buffered in SVAL). If SIMM is YES, SVAL is written to VAL without conversion, if SIMM is RAW, SVAL is
trancated to RVAL and converted. SSCN sets a different SCAN mechanism to use in simulation mode. SDLY sets a
delay (in sec) that is used for asynchronous simulation processing.

See Input Simulation Fields for more information on simulation mode and its fields.

Field Summary Type DCT Default Read Write CA PP
SIML Simulation Mode Link INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuSimm No Yes Yes No

SIOL Simulation Input Link INLINK Yes Yes Yes No

SVAL Simulation Value ULONG No Yes Yes No

SIMS Simulation Mode Severity MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

1.5. EPICS Record Types 197

EPICS Documentation Sandbox

Record Support

Record Support Routines

init_record

This routine initializes SIMM with the value of SIML if SIML type is CONSTANT link or creates a channel access
link if SIML type is PV_LINK. SVAL is likewise initialized if SIOL is CONSTANT or PV_LINK.

This routine next checks to see that device support is available and a device support read routine is defined. If either
does not exist, an error message is issued and processing is terminated.

Clears MASK and then sets the NOBT low order bits.

If device support includes init_record(), it is called.

init_common is then called to determine if any states are defined. If states are defined, SDEF is set to TRUE.

process

See next section.

special

Calls init_common to compute SDEF when any of the fields ZRVL, . . . FFVL change value.

get_enum_str

Retrieves ASCII string corresponding to VAL.

get_enum_strs

Retrieves ASCII strings for ZRST,. . . FFST.

put_enum_str

Checks if string matches ZRST,. . . FFST and if it does, sets VAL.

Record Processing

Routine process implements the following algorithm:

1. Check to see that the appropriate device support module exists. If it doesn’t, an error message is issued and
processing is terminated with the PACT field still set to TRUE. This ensures that processes will no longer be
called for this record. Thus error storms will not occur.

2. readValue is called. See “Input Records” for more information.

3. If PACT has been changed to TRUE, the device support read routine has started but has not completed reading
a new input value. In this case, the processing routine merely returns, leaving PACT TRUE.

198 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

4. Convert:

• status=read_mbbi

• PACT = TRUE

• recGblGetTimeStamp() is called.

• If status is 0, then determine VAL

– Set rval = RVAL

– Shift rval right SHFT bits

• If at least one state value is defined

– Set UDF to TRUE

• If RVAL is ZRVL,. . . ,FFVL then set

– VAL equals index of state

– UDF set to FALSE

• Else set VAL = undefined

– Else set VAL = RVAL

• Set UDF to FALSE

– If status is 1, return 0

– If status is 2, set status = 0

5. Check alarms. This routine checks to see if the new VAL causes the alarm status and severity to change. If so,
NSEV, NSTA and LALM are set.

6. Check to see if monitors should be invoked.

• Alarm monitors are invoked if the alarm status or severity has changed.

• Archive and value change monitors are invoked if MLST is not equal to VAL.

• Monitors for RVAL are checked whenever other monitors are invoked.

• NSEV and NSTA are reset to 0.

7. Scan forward link if necessary, set PACT FALSE, and return.

Device Support

Fields Of Interest To Device Support

Each input record must have an associated set of device support routines.

The primary responsibility of the device support routines is to obtain a new raw input value whenever read_mbbi is
called. The device support routines are primarily interested in the following fields:

1.5. EPICS Record Types 199

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
PACT Record active UCHAR No Yes No No

DPVT Device Private NOACCESS No No No No

UDF Undefined UCHAR Yes 1 Yes Yes Yes
NSEV New Alarm Severity MENU menuAlarmSevr No Yes No No

NSTA New Alarm Status MENU menuAlarmStat No Yes No No

NOBT Number of Bits USHORT Yes Yes No No

VAL Current Value ENUM Yes Yes Yes Yes

INP Input Specification INLINK Yes Yes Yes No

RVAL Raw Value ULONG No Yes Yes Yes

MASK Hardware Mask ULONG No Yes No No

SHFT Shift USHORT Yes Yes Yes No

Device Support Routines

Device support consists of the following routines:

long report(int level)

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

200 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

long init(int after)

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

init_record

init_record(precord)

This routine is optional. If provided, it is called by the record support init_record() routine. If it uses MASK, it
should shift it as necessary and also give SHFT a value.

get_ioint_info

get_ioint_info(int cmd,struct dbCommon *precord,IOSCANPVT *ppvt)

This routine is called by the ioEventScan system each time the record is added or deleted from an I/O event scan list.
cmd has the value (0,1) if the record is being (added to, deleted from) an I/O event list. It must be provided for any
device type that can use the I/O Event scanner.

read_mbbi

read_mbbi(precord)

This routine must provide a new input value. It returns the following values:

• 0: Success. A new raw value is placed in RVAL. The record support module determines VAL from RVAL, SHFT,
and ZEVL . . . FFVL.

• 2: Success, but don’t modify VAL.

• Other: Error.

Device Support For Soft Records

Two soft device support modules Soft Channel and Raw Soft Channel are provided for multi-bit binary input
records not related to actual hardware devices. The INP link type must be either CONSTANT, DB_LINK, or CA_LINK.

Soft Channel

read_mbbi always returns a value of 2, which means that no conversion is performed.

If the INP link type is constant, then the constant value is stored into VAL by init_record(), and UDF is set to
FALSE. VAL can be changed via dbPut requests. If the INP link type is PV_LINK, then dbCaAddInlink is called by
init_record().

read_mbbi calls recGblGetLinkValue to read the current value of VAL. See Soft Input.

If the return status of recGblGetLinkValue is zero, then read_mbbi sets UDF to FALSE. The status of recG-
blGetLinkValue is returned.

1.5. EPICS Record Types 201

EPICS Documentation Sandbox

Raw Soft Channel

This module is like the previous except that values are read into RVAL, VAL is computed from RVAL, and read_mbbi
returns a value of 0. Thus the record processing routine will determine VAL in the normal way.

1.5.23 Multi-Bit Binary Output Direct Record (mbboDirect)

The mbboDirect record performs roughly the opposite function to that of the mbbiDirect record.

It can accept boolean values in its 32 bit fields (B0-B9, BA-BF, B10-B19 and B1A-B1F), and converts them to a 32-bit
signed integer in VAL which is provided to the device support. A zero value in a bit field becomes a zero bit in VAL,
a non-zero value in a bit field becomes a one bit in VAL, with B0 being the least signficant bit and B1F the MSB/sign
bit.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The mbboDirect record has the standard fields for specifying under what circumstances it will be processed. These
fields are listed in Scan Fields.

Field Summary Type DCT Default Read Write CA PP
SCAN Scan Mechanism MENU menuScan Yes Yes Yes No

PHAS Scan Phase SHORT Yes Yes Yes No

EVNT Event Name STRING [40] Yes Yes Yes No

PRIO Scheduling Priority MENU menuPriority Yes Yes Yes No

PINI Process at iocInit MENU menuPini Yes Yes Yes No

Desired Output Parameters

Like all output records, the mbboDirect record must specify where its output should originate when it gets processed.
The Output Mode SeLect field (OMSL) determines whether the output value should be read from another record or
not. When set to closed_loop, a 32-bit integer value (the “desired output”) will be read from a link specified in the
Desired Output Link (DOL) field and placed into the VAL field.

When OMSL is set to supervisory, the DOL field is ignored during processing and the contents of VAL are used. A
value to be output may thus be written direcly into the VAL field from elsewhere as long as the record is in supervisory
mode.

202 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
OMSL Output Mode Select MENU menuOmsl Yes Yes Yes Yes

DOL Desired Output Link INLINK Yes Yes Yes No

VAL Word LONG Yes Yes Yes Yes

Bit Fields

The fields B0 through BF and B10 through B1F provide an alternative way to set the individual bits of the VAL field
when the record is in supervisory mode. Writing to one of these fields will then modify the corresponding bit in
VAL, and writing to VAL will update these bit fields from that value.

The VAL field is signed so it can be accessed through Channel Access as an integer; if it were made unsigned (a
DBF_ULONG) its representation through Channel Access would become a double, which could cause problems with
some client programs.

Prior to the EPICS 7.0.6.1 release the individual bit fields were not updated while the record was in closed_loopmode
with VAL being set from the DOL link, and writing to the bit fields in that mode could cause the record to process but
the actual field values would not affect VAL at all. Changing the OMSL field from closed_loop to supervisory
would set the bit fields from VAL at that time and trigger a monitor event for the bits that changed at that time. At
record initialization if VAL is defined and the OMSL field is supervisory the bit fields would be set from VAL.

From EPICS 7.0.6.1 the bit fields get updated from VAL during record processing and monitors are triggered on them
in either mode. Attempts to write to the bit fields while in closed_loop mode will be rejected by the special()
routine which may trigger an error from the client that wrote to them. During initialization if the record is still undefined
(UDF) after DOL has been read and the device support initialized but at least one of the B0-B1F fields is non-zero, the
VAL field will be set from those fields and UDF will be cleared.

Field Summary Type DCT Default Read Write CA PP
B0 Bit 0 UCHAR Yes Yes Yes Yes
B1 Bit 1 UCHAR Yes Yes Yes Yes
B2 Bit 2 UCHAR Yes Yes Yes Yes
B3 Bit 3 UCHAR Yes Yes Yes Yes
B4 Bit 4 UCHAR Yes Yes Yes Yes
B5 Bit 5 UCHAR Yes Yes Yes Yes
B6 Bit 6 UCHAR Yes Yes Yes Yes
B7 Bit 7 UCHAR Yes Yes Yes Yes
B8 Bit 8 UCHAR Yes Yes Yes Yes
B9 Bit 9 UCHAR Yes Yes Yes Yes
BA Bit 10 UCHAR Yes Yes Yes Yes
BB Bit 11 UCHAR Yes Yes Yes Yes
BC Bit 12 UCHAR Yes Yes Yes Yes
BD Bit 13 UCHAR Yes Yes Yes Yes
BE Bit 14 UCHAR Yes Yes Yes Yes
BF Bit 15 UCHAR Yes Yes Yes Yes
B10 Bit 16 UCHAR Yes Yes Yes Yes
B11 Bit 17 UCHAR Yes Yes Yes Yes
B12 Bit 18 UCHAR Yes Yes Yes Yes
B13 Bit 19 UCHAR Yes Yes Yes Yes

continues on next page

1.5. EPICS Record Types 203

EPICS Documentation Sandbox

Table 2 – continued from previous page
Field Summary Type DCT Default Read Write CA PP
B14 Bit 20 UCHAR Yes Yes Yes Yes
B15 Bit 21 UCHAR Yes Yes Yes Yes
B16 Bit 22 UCHAR Yes Yes Yes Yes
B17 Bit 23 UCHAR Yes Yes Yes Yes
B18 Bit 24 UCHAR Yes Yes Yes Yes
B19 Bit 25 UCHAR Yes Yes Yes Yes
B1A Bit 26 UCHAR Yes Yes Yes Yes
B1B Bit 27 UCHAR Yes Yes Yes Yes
B1C Bit 28 UCHAR Yes Yes Yes Yes
B1D Bit 29 UCHAR Yes Yes Yes Yes
B1E Bit 30 UCHAR Yes Yes Yes Yes
B1F Bit 31 UCHAR Yes Yes Yes Yes

Convert and Write Parameters

For records that are to write values to hardware devices, the OUT output link must contain the address of the I/O card,
and the DTYP field must specify the proper device support module. Be aware that the address format differs according
to the I/O bus used. See Address Specification for information on the format of hardware addresses.

During record processing VAL is converted into RVAL, which is the actual 32-bit word to be sent out. RVAL is set to
VAL shifted left by the number of bits specified in the SHFT field (SHFT is normally set by device support). RVAL is
then sent out to the location specified in the OUT field.

The fields NOBT and MASK can be used by device support to force some of the output bits written by that support to
be zero. By default all 32 bits can be sent, but the NOBT field can be set to specify a smaller number of contiguous
bits, or MASK can specify a non-contiguous set of bits. When setting MASK it is often necessary to set NOBT to
a non-zero value as well, although in this case the actual value of NOBT may be ignored by the device support. If a
device support sets the SHFT field it will also left-shift the value of MASK at the same time.

For mbboDirect records writing to a link instead of to hardware, the DTYP field must select one of the soft device
support routines Soft Channel or Raw Soft Channel. The Soft Channel support writes the contents of the VAL
field to the output link. The Raw Soft Channel support allows SHFT to be set in the DB file, and sends the result of
ANDing the shifted MASK with the RVAL field’s value.

Field Summary Type DCT Default Read Write CA PP
OUT Output Specification OUTLINK Yes Yes Yes No

RVAL Raw Value ULONG No Yes No Yes

SHFT Shift USHORT Yes Yes Yes No

MASK Hardware Mask ULONG No Yes No No

NOBT Number of Bits SHORT Yes Yes No No

204 Chapter 1. EPICS Record Reference Manual

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#address-specification

EPICS Documentation Sandbox

Operator Display Parameters

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Run-time Parameters

These parameters are used by the run-time code for processing the mbbo Direct record.

MASK is used by device support routine to read the hardware register. Record support sets the low order NOBT bits
of MASK at initialization, and device support is allowed to shift this value.

MLST holds the value when the last monitor for value change was triggered. OBIT has a similar role for bits held in
the B0-B1F fields.

Field Summary Type DCT Default Read Write CA PP
NOBT Number of Bits SHORT Yes Yes No No

ORAW Prev Raw Value ULONG No Yes No No

MASK Hardware Mask ULONG No Yes No No

MLST Last Value Monitored LONG No Yes No No

OBIT Last Bit mask Monitored LONG No Yes No No

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML) is YES, the record is put in SIMS severity and the value is written through SIOL,
without conversion. If SIMM is RAW, the value is converted and RVAL is written. SSCN sets a different SCAN
mechanism to use in simulation mode. SDLY sets a delay (in sec) that is used for asynchronous simulation processing.

See Output Simulation Fields for more information on simulation mode and its fields.

1.5. EPICS Record Types 205

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
SIML Simulation Mode Link INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuSimm No Yes Yes No

SIOL Simulation Output Link OUTLINK Yes Yes Yes No

SIMS Simulation Mode Severity MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

Alarm Parameters

The possible alarm conditions for mbboDirect records are the SCAN, READ, and INVALID alarms.

The IVOA field specifies an action to take when an INVALID alarm is triggered. There are three possible actions:
Continue normally, Don't drive outputs, or Set output to IVOV. When Set output to IVOV is speci-
fied and a INVALID alarm is triggered, the record will write the value in the IVOV field to the output.

See Invalid Output Action Fields for more information about IVOA and IVOV.

See Alarm Specification for a complete explanation of record alarms and of the standard fields. Alarm Fields lists other
fields related to alarms that are common to all record types.

Field Summary Type DCT Default Read Write CA PP
IVOA INVALID outpt action MENU menuIvoa Yes Yes Yes No

IVOV INVALID output value LONG Yes Yes Yes No

Record Support

Record Support Routines

init_record

This routine initializes SIMM if SIML is a constant or creates a channel access link if SIML is PV_LINK. If SIOL is
PV_LINK a channel access link is created.

This routine next checks to see that device support is available.The routine next checks to see if the device support
write routine is defined. If either device support or the device support write routine does not exist, an error message is
issued and processing is terminated.

If DOL is a constant, then VAL is initialized to its value and UDF is set to FALSE.

MASK is cleared and then the NOBT low order bits are set.

If device support includes init_record(), it is called.

If device support returns success, VAL is then set from RVAL and UDF is set to FALSE.

206 Chapter 1. EPICS Record Reference Manual

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#alarm-specification

EPICS Documentation Sandbox

Process

See next section.

Record Processing

Routine process implements the following algorithm:

1. Check to see that the appropriate device support module exists. If it doesn’t, an error message is issued and
processing is terminated with the PACT field still set to TRUE. This ensures that processes will no longer be
called for this record. Thus error storms will not occur.

2. If PACT is FALSE

• If DOL is DB_LINK and OMSL is CLOSED_LOOP

– Get value from DOL

– Set PACT to FALSE

3. Convert

• If PACT is FALSE, compute RVAL

– Set RVAL = VAL

– Shift RVAL left SHFT bits

• Status=write_mbboDirect

4. If PACT has been changed to TRUE, the device support write output routine has started but has not completed
writing the new value. In this case, the processing routine merely returns, leaving PACT TRUE.

5. Check to see if monitors should be invoked.

• Alarm monitors are invoked if the alarm status or severity has changed.

• Archive and value change monitors are invoked if MLST is not equal to VAL.

• Monitors for RVAL and RBV are checked whenever other monitors are invoked.

• NSEV and NSTA are reset to 0.

6. Scan forward link if necessary, set PACT FALSE, and return.

Device Support

Fields Of Interest To Device Support

Each mbboDirect record must have an associated set of device support routines. The primary responsibility of the
device support routines is to obtain a new raw mbbo value whenever write_mbboDirect is called. The device support
routines are primarily interested in the following fields:

1.5. EPICS Record Types 207

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
PACT Record active UCHAR No Yes No No

DPVT Device Private NOACCESS No No No No

UDF Undefined UCHAR Yes 1 Yes Yes Yes
NSEV New Alarm Severity MENU menuAlarmSevr No Yes No No

NSTA New Alarm Status MENU menuAlarmStat No Yes No No

NOBT Number of Bits SHORT Yes Yes No No

OUT Output Specification OUTLINK Yes Yes Yes No

RVAL Raw Value ULONG No Yes No Yes

RBV Readback Value ULONG No Yes No No

MASK Hardware Mask ULONG No Yes No No

SHFT Shift USHORT Yes Yes Yes No

Device Support Routines

Device support consists of the following routines:

long report(int level)

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

208 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

long init(int after)

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

init_record

init_record(precord)

This routine is optional. If provided, it is called by the record support init_record() routine. If MASK is used, it
should be shifted if necessary and SHFT given a value.

get_ioint_info

get_ioint_info(int cmd,struct dbCommon *precord,IOSCANPVT *ppvt)

This routine is called by the ioEventScan system each time the record is added or deleted from an I/O event scan list.
cmd has the value (0,1) if the record is being (added to, deleted from) an I/O event list. It must be provided for any
device type that can use the ioEvent scanner.

write_mbboDirect

write_mbboDirect(precord)

This routine must output a new value. It returns the following values:

• 0: Success.

• Other: Error.

Device Support For Soft Records

This SOft Channel module writes the current value of VAL.

If the OUT link type is PV_LINK, then dbCaAddInlink is called by init_record().

write_mbboDirect calls recGblPutLinkValue to write the current value of VAL.

See Soft Output.

1.5.24 Multi-Bit Binary Output Record (mbbo)

The normal use for the mbbo record type is to send a binary value (representing one of up to 16 states) to a Digital
Output module. It is used for any device that uses more than one contiguous bit to control it. The mbbo record can also
be used to write discrete values to other records via database or channel access links.

1.5. EPICS Record Types 209

EPICS Documentation Sandbox

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The mbbo record has the standard fields for specifying under what circumstances it will be processed. These fields are
listed in Scan Fields.

Desired Output Parameters

The multi-bit binary output record, like all output records, must specify where its output originates. The output mode
select (OMSL) field determines whether the output originates from another record or from database access (i.e., the
operator). When set to closed_loop, the desired output is retrieved from the link specified in the desired output
(DOL) field–which can specify either a database or channel access link–and placed into the VAL field. When set to
supervisory, the DOL field is ignored and the current value of VAL is simply written. VAL can be changed via
dpPuts at run-time when OMSL is supervisory. The DOL field can also be a constant, in which case the VAL field
is initialized to the constant value. If DOL is a constant, OMSL cannot be set to closed_loop.

The VAL field itself usually consists of an index that specifies one of the states. The actual output written is the value
of RVAL, which is converted from VAL following the routine explained in the next section. However, records that use
the Soft Channel device support module write the VAL field’s value without any conversion.

Field Summary Type DCT Default Read Write CA PP
OMSL Output Mode Select MENU menuOmsl Yes Yes Yes No

DOL Desired Output Link INLINK Yes Yes Yes No

VAL Desired Value ENUM Yes Yes Yes Yes

Convert and Write Parameters

The device support routines write the desired output to the location specified in the OUT field. If the record uses soft
device support, OUT can contain a constant, a database link, or a channel access link; however, if OUT is a constant,
no value will be written.

For records that write their values to hardware devices, the OUT output link must specify the address of the I/O card,
and the DTYP field must specify the corresponding device support module. Be aware that the address format differs
according to the I/O bus used.

For mbbo records that write to hardware, the value written to the output location is the value contained in RVAL, which
is converted from VAL, VAL containing an index of one of the 16 states (0-15). RVAL is then set to the corresponding
state value, the value in one of the fields ZRVL through FFVL. Then this value is shifted left according to the number
in the SHFT field so that the value is in the correct position for the bits being used (the SHFT value is set by device
support and is not configurable by the user).

The state value fields ZRVL through FFVL must be configured by the user before run-time. When the state values are
not defined, the states defined (SDEF) field is set to FALSE at initialization time by the record routines. When SDEF is
FALSE, then the record processing routine does not try to find a match, RVAL is set equal to VAL, the bits are shifted
using the number in SHFT, and the value is written thus.

210 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

If the OUT output link specifies a database link, channel access link, or constant, then the DTYP field must specify
either one of the two soft device support modules– Soft Channel or Raw Soft Channel. Soft Channel writes the
value of VAL to the output link, without any conversion, while Raw Soft Channel writes the value from RVAL after
it has undergone the above conversion.

Note also that when a string is retrieved as the desired output, a record support routine is provided (put_enum_str())
that will check to see if the string matches one of the strings in the ZRST through FFST fields. If a match is found,
RVAL is set equal to the corresponding state value of that string.

Field Summary Type DCT Default Read Write CA PP
OUT Output Specification OUTLINK Yes Yes Yes No

DTYP Device Type DEVICE Yes Yes Yes No

RVAL Raw Value ULONG No Yes Yes Yes

SHFT Shift USHORT Yes Yes Yes No

SDEF States Defined SHORT No Yes No No

ZRVL Zero Value ULONG Yes Yes Yes Yes

ONVL One Value ULONG Yes Yes Yes Yes

TWVL Two Value ULONG Yes Yes Yes Yes

THVL Three Value ULONG Yes Yes Yes Yes

FRVL Four Value ULONG Yes Yes Yes Yes

FVVL Five Value ULONG Yes Yes Yes Yes

SXVL Six Value ULONG Yes Yes Yes Yes

SVVL Seven Value ULONG Yes Yes Yes Yes

EIVL Eight Value ULONG Yes Yes Yes Yes

NIVL Nine Value ULONG Yes Yes Yes Yes

TEVL Ten Value ULONG Yes Yes Yes Yes

ELVL Eleven Value ULONG Yes Yes Yes Yes

TVVL Twelve Value ULONG Yes Yes Yes Yes

TTVL Thirteen Value ULONG Yes Yes Yes Yes

FTVL Fourteen Value ULONG Yes Yes Yes Yes

FFVL Fifteen Value ULONG Yes Yes Yes Yes

1.5. EPICS Record Types 211

EPICS Documentation Sandbox

Operator Display Parameters

These parameters are used to present meaningful data to the operator. These fields are used to display the value and
other parameters of the mbbo record either textually or graphically. The ZRST-FFST fields contain strings describing
each of the corresponding states. The get_enum_str() and get_enum_strs() record routines retrieve these strings
for the operator. get_enum_str() gets the string corresponding to the value in VAL, and get_enum_strs() retrieves
all the strings.

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

ZRST Zero String STRING [26] Yes Yes Yes Yes

ONST One String STRING [26] Yes Yes Yes Yes

TWST Two String STRING [26] Yes Yes Yes Yes

THST Three String STRING [26] Yes Yes Yes Yes

FRST Four String STRING [26] Yes Yes Yes Yes

FVST Five String STRING [26] Yes Yes Yes Yes

SXST Six String STRING [26] Yes Yes Yes Yes

SVST Seven String STRING [26] Yes Yes Yes Yes

EIST Eight String STRING [26] Yes Yes Yes Yes

NIST Nine String STRING [26] Yes Yes Yes Yes

TEST Ten String STRING [26] Yes Yes Yes Yes

ELST Eleven String STRING [26] Yes Yes Yes Yes

TVST Twelve String STRING [26] Yes Yes Yes Yes

TTST Thirteen String STRING [26] Yes Yes Yes Yes

FTST Fourteen String STRING [26] Yes Yes Yes Yes

FFST Fifteen String STRING [26] Yes Yes Yes Yes

212 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Alarm Parameters

The possible alarm conditions for multi-bit binary outputs are the SCAN, READ, INVALID, and state alarms. The
SCAN and READ alarms are called by the support modules and are not configurable by the user, as their severity is
always MAJOR.

The IVOA field specifies an action to take from a number of possible choices when the INVALID alarm is triggered.
The IVOV field contains a value to be written once the INVALID alarm has been triggered if Set output to IVOV
has been chosen in the IVOA field. The severity of the INVALID alarm is not configurable by the user.

The state alarms are configured in the below severity fields. These fields have the usual possible values for severity
fields: NO_ALARM, MINOR, and MAJOR.

The unknown state severity field (UNSV), if set to MINOR or MAJOR, triggers an alarm when the record support
routine cannot find a matching value in the state value fields for VAL or when VAL is out of range.

The change of state severity field (COSV) triggers an alarm when the record’s state changes, if set to MAJOR or
MINOR.

The state severity (ZRSV-FFSV) fields, when set to MAJOR or MINOR, trigger an alarm when VAL equals the corre-
sponding field.

See Invalid Output Action Fields for an explanation of the IVOA and IVOV fields. Alarm Fields lists the fields related
to alarms that are common to all record types.

1.5. EPICS Record Types 213

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
UNSV Unknown State Sevr MENU menuAlarmSevr Yes Yes Yes Yes

COSV Change of State Sevr MENU menuAlarmSevr Yes Yes Yes Yes

IVOA INVALID outpt action MENU menuIvoa Yes Yes Yes No

IVOV INVALID output value USHORT Yes Yes Yes No

ZRSV State Zero Severity MENU menuAlarmSevr Yes Yes Yes Yes

ONSV State One Severity MENU menuAlarmSevr Yes Yes Yes Yes

TWSV State Two Severity MENU menuAlarmSevr Yes Yes Yes Yes

THSV State Three Severity MENU menuAlarmSevr Yes Yes Yes Yes

FRSV State Four Severity MENU menuAlarmSevr Yes Yes Yes Yes

FVSV State Five Severity MENU menuAlarmSevr Yes Yes Yes Yes

SXSV State Six Severity MENU menuAlarmSevr Yes Yes Yes Yes

SVSV State Seven Severity MENU menuAlarmSevr Yes Yes Yes Yes

EISV State Eight Severity MENU menuAlarmSevr Yes Yes Yes Yes

NISV State Nine Severity MENU menuAlarmSevr Yes Yes Yes Yes

TESV State Ten Severity MENU menuAlarmSevr Yes Yes Yes Yes

ELSV State Eleven Severity MENU menuAlarmSevr Yes Yes Yes Yes

TVSV State Twelve Severity MENU menuAlarmSevr Yes Yes Yes Yes

TTSV State Thirteen Sevr MENU menuAlarmSevr Yes Yes Yes Yes

FTSV State Fourteen Sevr MENU menuAlarmSevr Yes Yes Yes Yes

FFSV State Fifteen Sevr MENU menuAlarmSevr Yes Yes Yes Yes

214 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Run-Time Parameters

These parameters are used by the run-time code for processing the multi-bit binary output.

MASK is used by device support routine to read the hardware register. Record support sets low order of MASK the
number of bits specified in NOBT. Device support can shift this value.

The LALM field implements the change of state alarm severity by holding the value of VAL when the previous change
of state alarm was issued.

MLST holds the value when the last monitor for value change was triggered.

SDEF is used by record support to save time if no states are defined; it is used for converting VAL to RVAL.

Field Summary Type DCT Default Read Write CA PP
NOBT Number of Bits USHORT Yes Yes No No

ORAW Prev Raw Value ULONG No Yes No No

MASK Hardware Mask ULONG No Yes No No

LALM Last Value Alarmed USHORT No Yes No No

MLST Last Value Monitored USHORT No Yes No No

SDEF States Defined SHORT No Yes No No

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML, if populated) is YES, the record is put in SIMS severity and the value is written through
SIOL, without conversion. If SIMM is RAW, the value is converted and RVAL is written. SSCN sets a different SCAN
mechanism to use in simulation mode. SDLY sets a delay (in sec) that is used for asynchronous simulation processing.

See Output Simulation Fields for more information on simulation mode and its fields.

Field Summary Type DCT Default Read Write CA PP
SIML Simulation Mode Link INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuSimm No Yes Yes No

SIOL Simulation Output Link OUTLINK Yes Yes Yes No

SIMS Simulation Mode Severity MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

1.5. EPICS Record Types 215

EPICS Documentation Sandbox

Record Support

Record Support Routines

init_record

This routine initializes SIMM if SIML is a constant or creates a channel access link if SIML is PV_LINK. If SIOL is
PV_LINK a channel access link is created.

This routine next checks to see that device support is available. The routine next checks to see if the device support
write routine is defined. If either device support or the device support write routine does not exist, an error message is
issued and processing is terminated.

If DOL is a constant, then VAL is initialized to its value and UDF is set to FALSE.

MASK is cleared and then the NOBT low order bits are set.

If device support includes init_record(), it is called.

init_common is then called to determine if any states are defined. If states are defined, SDEF is set to TRUE.

If device support returns success, VAL is then set from RVAL and UDF is set to FALSE.

process

See next section.

special

Computes SDEF when any of the fields ZRVL,. . . FFVL change value.

get_value

Fills in the values of struct valueDes so that they refer to VAL.

get_enum_str

Retrieves ASCII string corresponding to VAL.

get_enum_strs

Retrieves ASCII strings for ZRST,. . . FFST.

216 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

put_enum_str

Checks if string matches ZRST,. . . FFST and if it does, sets VAL.

Record Processing

Routine process implements the following algorithm:

1. Check to see that the appropriate device support module exists. If it doesn’t, an error message is issued and
processing is terminated with the PACT field still set to TRUE. This ensures that processes will not longer be
called for this record. Thus error storms will not occur.

2. If PACT is FALSE

• If DOL is DB_LINK and OMSL is CLOSED_LOOP

– Get value from DOL

– Set UDF to FALSE

– Check for link alarm

• If any state values are defined

– If VAL > 15, then raise alarm and go to 4

– Else using VAL as index set RVAL = one of ZRVL,. . . FFVL

• Else set RVAL = VAL

• Shift RVAL left SHFT bits

3. Convert

• If PACT is FALSE, compute RVAL

– If VAL is 0,. . . ,15, set RVAL from ZRVL,. . . ,FFVL

– If VAL out of range, set RVAL = undefined

• Status = write_mbbo

4. Check alarms. This routine checks to see if the new VAL causes the alarm status and severity to change. If so,
NSEV, NSTA and LALM are set.

5. Check severity and write the new value. See Output Simulation Fields and Invalid Output Action Fields for more
information.

6. If PACT has been changed to TRUE, the device support write output routine has started but has not completed
writing the new value. In this case, the processing routine merely returns, leaving PACT TRUE.

7. Check to see if monitors should be invoked.

• Alarm monitors are invoked if the alarm status or severity has changed.

• Archive and value change monitors are invoked if MLST is not equal to VAL.

• Monitors for RVAL and RBV are checked whenever other monitors are invoked.

• NSEV and NSTA are reset to 0.

8. Scan forward link if necessary, set PACT FALSE, and return.

1.5. EPICS Record Types 217

EPICS Documentation Sandbox

Device Support

Fields Of Interest To Device Support

Each mbbo record must have an associated set of device support routines. The primary responsibility of the device
support routines is to obtain a new raw mbbo value whenever write_mbbo is called. The device support routines are
primarily interested in the following fields:

Field Summary Type DCT Default Read Write CA PP
PACT Record active UCHAR No Yes No No

DPVT Device Private NOACCESS No No No No

NSEV New Alarm Severity MENU menuAlarmSevr No Yes No No

NSTA New Alarm Status MENU menuAlarmStat No Yes No No

NOBT Number of Bits USHORT Yes Yes No No

OUT Output Specification OUTLINK Yes Yes Yes No

RVAL Raw Value ULONG No Yes Yes Yes

RBV Readback Value ULONG No Yes No No

MASK Hardware Mask ULONG No Yes No No

SHFT Shift USHORT Yes Yes Yes No

Device Support Routines

Device support consists of the following routines:

218 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

long report(int level)

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

long init(int after)

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

init_record

init_record(precord)

This routine is optional. If provided, it is called by the record support’s init_record() routine. If MASK is used, it
should be shifted if necessary and SHFT given a value.

get_ioint_info

get_ioint_info(int cmd,struct dbCommon *precord,IOSCANPVT *ppvt)

This routine is called by the ioEventScan system each time the record is added or deleted from an I/O event scan list.
cmd has the value (0,1) if the record is being (added to, deleted from) an I/O event list. It must be provided for any
device type that can use the ioEvent scanner.

write_mbbo

write_mbbo(precord)

This routine must output a new value. It returns the following values:

• 0: Success.

• Other: Error.

Device Support For Soft Records

Soft Channel

The Soft Channel module writes the current value of VAL.

If the OUT link type is PV_LINK, then dbCaAddInlink is called by init_record().

write_mbbo() calls dbPutLink() to write the current value of VAL. See “Soft Output” for more information.

1.5. EPICS Record Types 219

EPICS Documentation Sandbox

Raw Soft Channel

This module writes RVAL to the location specified in the output link. It returns a 0.

1.5.25 Permissive Record (permissive)

The permissive record is for communication between a server and a client. An example would be a sequence program
server and an operator interface client. By using multiple permissive records a sequence program can communicate its
current state to the client.

Note this record is deprecated and may be removed in a future EPICS release.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The permissive record has the standard fields for specifying under what circumstances the record will be processed.
These fields are listed in Scan Fields.

Client-server Parameters

The client and server communicate through the VAL and watchdog flag (WFLG) fields. At initialization, both fields
are set equal to 0, which means OFF. The server sets WFLG equal to ON when it is ready to accept a request. The client
monitors WFLG and when WFLG equals 1, the client-server action is performed (a private matter between server and
client).

When WFLG is off–when the server is busy–the client program may turn the VAL field from OFF to ON. After the
server finishes its task, it will notice that VAL is ON and will turn both WFLG and VAL OFF and performs the requested
service.

Note that when WFLG is ON, the client program ‘’must not” turn VAL to on.

Field Summary Type DCT Default Read Write CA PP
VAL Status USHORT Yes Yes Yes Yes

WFLG Wait Flag USHORT No Yes Yes Yes

Operator Display Parameters

The label field (LABL) contains a string given to it that should describe the record in further detail. In addition to the
DESC field. See “Fields Common to All Record Types” for more on the record name (NAME) and description (DESC)
fields.

220 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
LABL Button Label STRING [20] Yes Yes Yes Yes

NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Alarm Parameters

The Permissive record has the alarm parameters common to all record types. Alarm Fields lists the fields related to
alarms that are common to all record types.

Run-time Parameters

These fields are used to trigger monitors for each field. Monitors for the VAL field are triggered when OVAL, the old
value field, does not equal VAL. Likewise, OFLG causes monitors to be invoked for WFLG when WFLG does not
equal OLFG.

Field Summary Type DCT Default Read Write CA PP
OVAL Old Status USHORT No Yes No No

OFLG Old Flag USHORT No Yes No No

Record Support

Record Support Routines

process

long (*process)(struct dbCommon *precord)

process() sets UDF to FALSE, triggers monitors on VAL and WFLG when they change, and scans the forward link
if necessary.

1.5.26 Printf Record (printf)

The printf record is used to generate and write a string using a format specification and parameters, analogous to the C
printf() function.

1.5. EPICS Record Types 221

EPICS Documentation Sandbox

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The printf record has the standard fields for specifying under what circumstances it will be processed. These fields are
described in Scan Fields.

Field Summary Type DCT Default Read Write CA PP
SCAN Scan Mechanism MENU menuScan Yes Yes Yes No

PHAS Scan Phase SHORT Yes Yes Yes No

EVNT Event Name STRING [40] Yes Yes Yes No

PRIO Scheduling Priority MENU menuPriority Yes Yes Yes No

PINI Process at iocInit MENU menuPini Yes Yes Yes No

String Generation Parameters

The printf record must specify the desired output string with embedded format specifiers in the FMT field. Plain
characters are copied directly to the output string. A pair of percent characters ‘%%’ are converted into a single percent
character in the output string. A single precent character ‘%’ introduces a format specifier and is followed by zero or
more of the standard printf() format flags and modifiers:

• Plus (‘+’)

• Minus (‘-‘)

• Space (‘ ‘)

• Hash (‘#’)

• Minimum Field Width (decimal digits or ‘*’)

• Precision (‘.’ followed by decimal digits or ‘*’)

• Length Modifier ‘hh’ – Reads link as DBR_CHAR or DBR_UCHAR

• Length Modifier ‘h’ – Reads link as DBR_SHORT or DBR_USHORT for integer conversions, DBR_FLOAT
for floating-point conversions.

• Length Modifier ‘l’ – Reads link as DBR_LONG or DBR_ULONG for integer conversions, array of
DBR_CHAR for string conversion.

• Length Modifier ‘ll’ – Reads link as DBR_INT64 or DBR_UINT64 for integer conversions.

The following character specifies the conversion to perform, see your operating system’s printf() documentation for
more details. These conversions ultimately call the snprintf() routine for the actual string conversion process, so
are subject to the behaviour of that routine.

• ‘c’ – Convert to a character. Only single byte characters are permitted.

• ‘d’ or ‘i’ – Convert to a decimal integer.

222 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

• ‘o’ – Convert to an unsigned octal integer.

• ‘u’ – Convert to an unsigned decimal integer.

• ‘x’ – Convert to an unsigned hexadecimal integer, using abcdef.

• ‘X’ – Convert to an unsigned hexadecimal integer, using ABCDEF.

• ‘e’ or ‘E’ – Convert to floating-point in exponent style, reading the link as DBR_DOUBLE or DBR_FLOAT.

• ‘f’ or ‘F’ – Convert to floating-point in fixed-point style, reading the link as DBR_DOUBLE or DBR_FLOAT.

• ‘g’ or ‘G’ – Convert to floating-point in general style, reading the link as DBR_DOUBLE or DBR_FLOAT.

• ‘s’ – Insert string, reading the link as DBR_STRING or array of DBR_CHAR.

The fields INP0 . . . INP9 are input links that provide the parameter values to be formatted into the output. The format
specifiers in the FMT string determine which type of the data is requested through the appropriate input link. As
with printf() a * character may be used in the format to specify width and/or precision instead of numeric literals,
in which case additional input links are used to provide the necessary integer parameter or parameters. See Address
Specification for information on specifying links.

The formatted string is written to the VAL field. The maximum number of characters in VAL is given by SIZV, and
cannot be larger than 65535. The LEN field contains the length of the formatted string in the VAL field.

Field Summary Type DCT Default Read Write CA PP
FMT Format String STRING [81] Yes Yes Yes Yes

INP0 Input 0 INLINK Yes Yes Yes No

INP1 Input 1 INLINK Yes Yes Yes No

INP2 Input 2 INLINK Yes Yes Yes No

INP3 Input 3 INLINK Yes Yes Yes No

INP4 Input 4 INLINK Yes Yes Yes No

INP5 Input 5 INLINK Yes Yes Yes No

INP6 Input 6 INLINK Yes Yes Yes No

INP7 Input 7 INLINK Yes Yes Yes No

INP8 Input 8 INLINK Yes Yes Yes No

INP9 Input 9 INLINK Yes Yes Yes No

VAL Result STRING[SIZV] No Yes Yes Yes

SIZV Size of VAL buffer USHORT Yes 41 Yes No No
LEN Length of VAL ULONG No Yes No No

1.5. EPICS Record Types 223

https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#address-specification
https://docs.epics-controls.org/en/latest/guides/EPICS_Process_Database_Concepts.html#address-specification

EPICS Documentation Sandbox

Output Specification

The output link specified in the OUT field specifies where the printf record is to write the contents of its VAL field.
The link can be a database or channel access link. If the OUT field is a constant, no output will be written.

In addition, the appropriate device support module must be entered into the DTYP field.

Field Summary Type DCT Default Read Write CA PP
OUT Output Specification OUTLINK Yes Yes Yes No

DTYP Device Type DEVICE Yes Yes Yes No

Operator Display Parameters

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Alarm Parameters

The printf record has the alarm parameters common to all record types. Alarm Fields lists the fields related to alarms
that are common to all record types.

The IVLS field specifies a string which is sent to the OUT link if if input link data are invalid.

Field Summary Type DCT Default Read Write CA PP
IVLS Invalid Link String STRING [16] Yes LNK Yes Yes No

Device Support Interface

The record requires device support to provide an entry table (dset) which defines the following members:

typedef struct {
long number;
long (*report)(int level);
long (*init)(int after);
long (*init_record)(printfRecord *prec);
long (*get_ioint_info)(int cmd, printfRecord *prec, IOSCANPVT *piosl);
long (*write_string)(printfRecord *prec);

} printfdset;

The module must set number to at least 5, and provide a pointer to its write_string() routine; the other function
pointers may be NULL if their associated functionality is not required for this support layer. Most device supports also
provide an init_record() routine to configure the record instance and connect it to the hardware or driver support
layer.

224 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Device Support for Soft Records

A soft device support module Soft Channel is provided for writing values to other records or other software components.

Device support for DTYP stdio is provided for writing values to the stdout, stderr, or errlog streams. INST_IO
addressing @stdout, @stderr or @errlog is used on the OUT link field to select the desired stream.

1.5.27 Select Record (sel)

The select record computes a value based on input obtained from up to 12 locations. The selection algorithm can be
one of the following: Specified, High Signal, Low Signal, Median Signal. Each input can be a constant, a
database link, or a channel access link.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The select record has the standard fields for specifying under what circumstances the record will be processed. These
fields are listed in Scan Fields.

Read Parameters

The INPA-L links determine where the selection record retrieves the values from which it is to select or compute its
final value. The INPA-L links are input links configured by the user to be either constants, channel access links, or
database links. If channel access or database links, a value is retrieved for each link and placed in the corresponding
value field, A-L. If any input link is a constant, the value field for that link will be initialized with the constant value
given to it and can be modified via dbPuts.

Any links not defined are ignored by the selection record and its algorithm. An undefined link is any constant link
whose value is 0. At initialization time, the corresponding value links for such fields are set to NaN, which means
MISSING. The value field of an undefined link can be changed at run-time from NaN to another value in order to
define the link and its field. Note that all undefined links must be recognized as such if the selection algorithm is to
work as expected.

1.5. EPICS Record Types 225

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
INPA Input A INLINK Yes Yes Yes No

INPB Input B INLINK Yes Yes Yes No

INPC Input C INLINK Yes Yes Yes No

INPD Input D INLINK Yes Yes Yes No

INPE Input E INLINK Yes Yes Yes No

INPF Input F INLINK Yes Yes Yes No

INPG Input G INLINK Yes Yes Yes No

INPH Input H INLINK Yes Yes Yes No

INPI Input I INLINK Yes Yes Yes No

INPJ Input J INLINK Yes Yes Yes No

INPK Input K INLINK Yes Yes Yes No

INPL Input L INLINK Yes Yes Yes No

A Value of Input A DOUBLE No Yes Yes Yes

B Value of Input B DOUBLE No Yes Yes Yes

C Value of Input C DOUBLE No Yes Yes Yes

D Value of Input D DOUBLE No Yes Yes Yes

E Value of Input E DOUBLE No Yes Yes Yes

F Value of Input F DOUBLE No Yes Yes Yes

G Value of Input G DOUBLE No Yes Yes Yes

H Value of Input H DOUBLE No Yes Yes Yes

I Value of Input I DOUBLE No Yes Yes Yes

J Value of Input J DOUBLE No Yes Yes Yes

K Value of Input K DOUBLE No Yes Yes Yes

L Value of Input L DOUBLE No Yes Yes Yes

226 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Select Parameters

The selection algorithm is determined by three fields configurable by the user: the select mechanism (SELM) field, the
select number (SELN) field, and the index value location (NVL) field.

The SELM field has four choices, i.e., four algorithms as follows:

Menu selSELM

Index Identifier Choice String
0 selSELM_Specified Specified
1 selSELM_High_Signal High Signal
2 selSELM_Low_Signal Low Signal
3 selSELM_Median_Signal Median Signal

The selection record’s VAL field is determined differently for each algorithm. For Specified, the VAL field is set
equal to the value field (A, B, C, D, E, F, G, H, I, J, K, or L) specified by the SELN field. The SELN field contains
a number from 0-11 which corresponds to the value field to be used (0 means use A; 1 means use B, etc.). How the
NVL field is configured determines, in turn, SELN’s value. NVL is an input link from which a value for SELN can be
retrieved, Like most other input links NVL can be a constant, or a channel access or database link. If NVL is a link,
SELN is retrieved from the location in NVL. If a constant, SELN is initialized to the value given to the constant and
can be changed via dbPuts.

The High Signal, Low Signal, and Median Signal algorithms do not use SELN or NVL. If High Signal is
chosen, VAL is set equal to the highest value out of all the defined value fields (A-L). If Low Signal is chosen, VAL
is set equal to lowest value of all the defined fields (A-L). And if Median Signal is chosen, VAL is set equal to the
median value of the defined value fields (A-L). (Note that these algorithms select from the value fields; they do not
select from the value field index. For instance, Low Signal will not select the A field’s value unless the value itself is
the lowest of all the defined values.)

Field Summary Type DCT Default Read Write CA PP
SELM Select Mechanism MENU selSELM Yes Yes Yes No

SELN Index value USHORT No Yes Yes No

NVL Index Value Location INLINK Yes Yes Yes No

Operator Display Parameters

These parameters are used to present meaningful data to the operator. They display the value and other parameters of
the select record either textually or graphically.

EGU is a string of up to 16 characters describing the units that the selection record manipulates. It is retrieved by the
get_units record support routine.

The HOPR and LOPR fields set the upper and lower display limits for the VAL, HIHI, HIGH, LOW, and LOLO fields.
Both the get_graphic_double and get_control_double record support routines retrieve these fields.

The PREC field determines the floating point precision with which to display VAL. It is used whenever the
get_precision record support routine is called.

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

1.5. EPICS Record Types 227

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
EGU Engineering Units STRING [16] Yes Yes Yes No

HOPR High Operating Rng DOUBLE Yes Yes Yes No

LOPR Low Operating Range DOUBLE Yes Yes Yes No

PREC Display Precision SHORT Yes Yes Yes No

NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Alarm Parameters

The possible alarm conditions for select records are the SCAN, READ, and limit alarms. The SCAN and READ alarms
are called by the record or device support routines. The limit alarms are configured by the user in the HIHI, LOLO,
HIGH, and LOW fields using numerical values. They specify conditions for the VAL field. For each of these fields,
there is a corresponding severity field which can be either NO_ALARM, MINOR, or MAJOR. Alarm Fields lists the
fields related to alarms that are common to all record types.

Field Summary Type DCT Default Read Write CA PP
HIHI Hihi Alarm Limit DOUBLE Yes Yes Yes Yes

HIGH High Alarm Limit DOUBLE Yes Yes Yes Yes

LOW Low Alarm Limit DOUBLE Yes Yes Yes Yes

LOLO Lolo Alarm Limit DOUBLE Yes Yes Yes Yes

HHSV Hihi Severity MENU menuAlarmSevr Yes Yes Yes Yes

HSV High Severity MENU menuAlarmSevr Yes Yes Yes Yes

LSV Low Severity MENU menuAlarmSevr Yes Yes Yes Yes

LLSV Lolo Severity MENU menuAlarmSevr Yes Yes Yes Yes

HYST Alarm Deadband DOUBLE Yes Yes Yes No

228 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Monitor Parameters

These fields are configurable by the user. They are used as deadbands for the archiver and monitor calls for the VAL
field. Unless, VAL changes by more than the value specified by each, then the respective monitors will not be called.
If these fields have a value of zero, everytime the VAL changes, monitors are triggered; if they have a value of -1,
everytime the record is processed, monitors are triggered.

Field Summary Type DCT Default Read Write CA PP
ADEL Archive Deadband DOUBLE Yes Yes Yes No

MDEL Monitor Deadband DOUBLE Yes Yes Yes No

Run-time Parameters

These parameters are used by the run-time code for processing the selection record. They are not configurable prior
to run-time, nor are they modifiable at run-time. They represent the current state of the record. The record support
routines use some of them for more efficient processing.

The VAL field is the result of the selection record’s processing. It can be accessed in the normal way by another record
or through database access, but is not modifiable except by the record itself. The LALM, ALST, and the MLST are
used to implement the HYST, ADEL, and MDEL hysteresis factors for the alarms, archiver, and monitors, respectively.

The LA-LL fields are used to implement the monitors for each of the value fields, A-L. They represent previous input
values. For example, unless LA is not equal to A, no monitor is invoked for A.

1.5. EPICS Record Types 229

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
VAL Result DOUBLE Yes Yes No No

LALM Last Value Alarmed DOUBLE No Yes No No

ALST Last Value Archived DOUBLE No Yes No No

MLST Last Val Monitored DOUBLE No Yes No No

LA Prev Value of A DOUBLE No Yes No No

LB Prev Value of B DOUBLE No Yes No No

LC Prev Value of C DOUBLE No Yes No No

LD Prev Value of D DOUBLE No Yes No No

LE Prev Value of E DOUBLE No Yes No No

LF Prev Value of F DOUBLE No Yes No No

LG Prev Value of G DOUBLE No Yes No No

LH Prev Value of H DOUBLE No Yes No No

LI Prev Value of I DOUBLE No Yes No No

LJ Prev Value of J DOUBLE No Yes No No

LK Prev Value of K DOUBLE No Yes No No

LL Prev Value of L DOUBLE No Yes No No

Record Support

Record Support Routines

init_record

long (*init_record)(struct dbCommon *precord, int pass)

IF NVL is a constant, SELN is set to its value. If NVL is a PV_LINK a channel access link is created.

For each constant input link, the corresponding value field is initialized with the constant value (or NaN if the constant
has the value 0).

For each input link that is of type PV_LINK, a database or channel access link is created.

230 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

process

long (*process)(struct dbCommon *precord)

See “Record Processing”.

get_units

long (*get_units)(struct dbAddr *paddr, char *units)

Retrieves EGU.

get_precision

long (*get_precision)(const struct dbAddr *paddr, long *precision)

Retrieves PREC.

get_graphic_double

long (*get_graphic_double)(struct dbAddr *paddr, struct dbr_grDouble *p)

Sets the upper display and lower display limits for a field. If the field is VAL, HIHI, HIGH, LOW, or LOLO, the limits
are set to HOPR and LOPR, else if the field has upper and lower limits defined they will be used, else the upper and
lower maximum values for the field type will be used.

get_control_double

long (*get_control_double)(struct dbAddr *paddr, struct dbr_ctrlDouble *p)

Sets the upper control and the lower control limits for a field. If the field is VAL, HIHI, HIGH, LOW, or LOLO, the
limits are set to HOPR and LOPR, else if the field has upper and lower limits defined they will be used, else the upper
and lower maximum values for the field type will be used.

get_alarm_double

long (*get_alarm_double)(struct dbAddr *paddr, struct dbr_alDouble *p)

Sets the following values:

upper_alarm_limit = HIHI
upper_warning_limit = HIGH
lower_warning_limit = LOW
lower_alarm_limit = LOLO

1.5. EPICS Record Types 231

EPICS Documentation Sandbox

Record Processing

Routine process implements the following algorithm:

1. If NVL is a database or channel access link, SELN is obtained from NVL. Fetch all values if database or channel
access links. If SELM is SELECTED, then only the selected link is fetched.

2. Implement the appropriate selection algorithm. For SELECT_HIGH, SELECT_LOW, and SELECT_MEDIAN,
input fields are ignored if they are undefined. If success, UDF is set to FALSE.

3. Check alarms. This routine checks to see if the new VAL causes the alarm status and severity to change. If so,
NSEV, NSTA, and LALM are set. It also honors the alarm hysteresis factor (HYST). Thus the value must change
by more than HYST before the alarm status and severity is lowered.

4. Check to see if monitors should be invoked.

• Alarm monitors are invoked if the alarm status or severity has changed.

• Archive and value change monitors are invoked if ADEL and MDEL conditions are met

• Monitors for A-L are checked whenever other monitors are invoked

• NSEV and NSTA are reset to 0.

5. Scan forward link if necessary, set PACT FALSE, and return.

1.5.28 Sequence Record (seq)

The Sequence record is used to trigger the processing of up to ten other records and send values to those records.
It is similar to the fanout record, except that it will fetch an input value and write an output value instead of simply
processing a collection of forward links. It can also specify one of several selection algorithms that determine which
values to write. It has no associated device support.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The sequence record has the standard fields for specifying under what circumstances it will be processed. These fields
are listed in Scan Fields.

Desired Output Parameters

These fields determine where the record retrieves the values it is to write to other records. All of these values are not
necessarily used, depending on the selection algorithm.

The sequence record can retrieve up to 16 values from 16 locations. The user specifies the locations in the Desired
Output Link fields (DOL0-DOLF), which can be either constants, database links, or channel access links. If a Desired
Output Link is a constant, the corresponding value field for that link is initialized to the constant value. Otherwise, if
the Desired Output Link is a database or channel access link, a value is fetched from the link each time the record is
processed.

The value fetched from the Desired Output Links are stored in the corresponding Desired Output Value fields (DO0-
DOF). These fields can be initialized to a constant value, and may subsequently be changed via dbPuts.

232 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Desired Output Link Fields

Field Summary Type DCT Default Read Write CA PP
DOL0 Input link 0 INLINK Yes Yes Yes No

DOL1 Input link1 INLINK Yes Yes Yes No

DOL2 Input link 2 INLINK Yes Yes Yes No

DOL3 Input link 3 INLINK Yes Yes Yes No

DOL4 Input link 4 INLINK Yes Yes Yes No

DOL5 Input link 5 INLINK Yes Yes Yes No

DOL6 Input link 6 INLINK Yes Yes Yes No

DOL7 Input link 7 INLINK Yes Yes Yes No

DOL8 Input link 8 INLINK Yes Yes Yes No

DOL9 Input link 9 INLINK Yes Yes Yes No

DOLA Input link 10 INLINK Yes Yes Yes No

DOLB Input link 11 INLINK Yes Yes Yes No

DOLC Input link 12 INLINK Yes Yes Yes No

DOLD Input link 13 INLINK Yes Yes Yes No

DOLE Input link 14 INLINK Yes Yes Yes No

DOLF Input link 15 INLINK Yes Yes Yes No

1.5. EPICS Record Types 233

EPICS Documentation Sandbox

Desired Output Value Fields

Field Summary Type DCT Default Read Write CA PP
DO0 Value 0 DOUBLE No Yes Yes No

DO1 Value 1 DOUBLE No Yes Yes No

DO2 Value 2 DOUBLE No Yes Yes No

DO3 Value 3 DOUBLE No Yes Yes No

DO4 Value 4 DOUBLE No Yes Yes No

DO5 Value 5 DOUBLE No Yes Yes No

DO6 Value 6 DOUBLE No Yes Yes No

DO7 Value 7 DOUBLE No Yes Yes No

DO8 Value 8 DOUBLE No Yes Yes No

DO9 Value 9 DOUBLE No Yes Yes No

DOA Value 10 DOUBLE No Yes Yes No

DOB Value 11 DOUBLE No Yes Yes No

DOC Value 12 DOUBLE No Yes Yes No

DOD Value 13 DOUBLE No Yes Yes No

DOE Value 14 DOUBLE No Yes Yes No

DOF Value 15 DOUBLE No Yes Yes No

Output Parameters

When the record is processed, the desired output values are retrieved for the links in the record’s selection algorithm
and are written to the corresponding output link (LNK0-LNKF). These output links can be database links or channel
access links; they cannot be device addresses. There are sixteen output links, one for each desired output link. Only
those that are defined are used.

234 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
LNK0 Output Link 0 OUTLINK Yes Yes Yes No

LNK1 Output Link 1 OUTLINK Yes Yes Yes No

LNK2 Output Link 2 OUTLINK Yes Yes Yes No

LNK3 Output Link 3 OUTLINK Yes Yes Yes No

LNK4 Output Link 4 OUTLINK Yes Yes Yes No

LNK5 Output Link 5 OUTLINK Yes Yes Yes No

LNK6 Output Link 6 OUTLINK Yes Yes Yes No

LNK7 Output Link 7 OUTLINK Yes Yes Yes No

LNK8 Output Link 8 OUTLINK Yes Yes Yes No

LNK9 Output Link 9 OUTLINK Yes Yes Yes No

LNKA Output Link 10 OUTLINK Yes Yes Yes No

LNKB Output Link 11 OUTLINK Yes Yes Yes No

LNKC Output Link 12 OUTLINK Yes Yes Yes No

LNKD Output Link 13 OUTLINK Yes Yes Yes No

LNKE Output Link 14 OUTLINK Yes Yes Yes No

LNKF Output Link 15 OUTLINK Yes Yes Yes No

Selection Algorithm Parameters

When the sequence record is processed, it uses a selection algorithm similar to that of the selection record to decide
which links to process.The select mechanism field (SELM) has three algorithms to choose from: All, Specified or
Mask.

1.5. EPICS Record Types 235

EPICS Documentation Sandbox

Record fields related to the Selection Algorithm

Field Summary Type DCT Default Read Write CA PP
SELM Select Mechanism MENU seqSELM Yes Yes Yes No

SELN Link Selection USHORT No 1 Yes Yes No
SELL Link Selection Loc INLINK Yes Yes Yes No

SHFT Shift for Mask mode SHORT Yes -1 Yes Yes No
OFFS Offset for Specified SHORT Yes Yes Yes No

Fields Description

SELM - Selection Mode

Index Identifier Choice String
0 seqSELM_All All
1 seqSELM_Specified Specified
2 seqSELM_Mask Mask

See “Selection Algorithms Description” below;

SELL - Link Selection Location

This field can be initialized as a CONSTANT or as a LINK to any other record. SELN will fetch its value from this
field when the seq record is processed. Thus, when using Mask or Specified modes, the links that seq will process
can be dynamically changed by the record pointed by SELL.

SELN - Link Selection

When SELM has the value Specified the SELN field sets the index number of the link that will be processed, after
adding the OFFS field:

LNK_n_ where n = SELN + OFFS

(If not set, the OFFS field is ZERO)

When SELM has the value Mask the SELN field provides the bitmask that determines which links will be processed,
after shifting by SHFT bits:

if (SHFT >= 0)
bits = SELN >> SHFT

else
bits = SELN << -SHFT

(If not set, the SHFT field is -1 so bits from SELN are shifted left by 1)

236 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Note about SHFT and OFFS fields

The first versions of seq record had DO, DOL, LNK and DLY fields starting with index ONE (DO1, DOL1, LNK1
and DLY1). Since EPICS 7 the seq record now supports 16 links, starting from index ZERO (DO0, DOL0, LNK0 and
DLY0). The SHFT and OFFS fields were introduced to keep compatibility of old databases that used seq records with
links indexed from one.

To use the DO0, DOL0, LNK0, DLY0 fields when SELM = Mask, the SHFT field must be explicitly set to ZERO

Selection Algorithms Description

All

The All algorithm causes the record to process each input and output link each time the record is processed, in order
from 0 to 15. So when SELM is All, the desired output value from DOL0 will fetched and sent to LNK0, then the
desired output value from DOL1 will be fetched and sent to the location in LNK1, and so on until the last input and
output link DOF and LNKF. (Note that undefined links are not used.) If DOL_x_ is a constant, the current value field
is simply used and the desired output link is ignored. The SELN field is not used when All is the algorithm.

Specified

When the Specified algorithm is chosen, each time the record is processed it gets the integer value in the Link
Selection (SELN) field and uses that as the index of the link to process. For instance, if SELN is 4, the desired output
value from DO4 will be retrieved and sent to LNK4. If DOL_x_ is a constant, DO_x_ is simply used without the value
being fetched from the input link.

Mask

When Mask is chosen, the record uses the individual bits of the SELN field to determine the links to process. When bit
0 of SELN is set, the value from DO0 will be written to the location in LNK0; when bit 1 is set, the valud from DO1
will be written to the location in LNK1 etc. Thus for example if SELN is 3, the record will retrieve the values from
DO0 and DO1 and write them to the locations in LNK0 and LNK1, respectively. If SELN is 63, DO0. . .DO5 will be
written to LNK0. . .LNK5.

Delay Parameters

The delay parameters consist of 16 fields, one for each I/O link discussed above. These fields can be configured to
cause the record to delay processing the link. For instance, if the user gives the DLY1 field a value of 3.0, each time the
record is processed at run-time, the record will delay processing the DOL1, DOV1, and LNK1 fields for three seconds.
That is, the desired output value will not be fetched and written to the output link until three seconds have lapsed.

1.5. EPICS Record Types 237

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
DLY0 Delay 0 DOUBLE Yes Yes Yes No

DLY1 Delay 1 DOUBLE Yes Yes Yes No

DLY2 Delay 2 DOUBLE Yes Yes Yes No

DLY3 Delay 3 DOUBLE Yes Yes Yes No

DLY4 Delay 4 DOUBLE Yes Yes Yes No

DLY5 Delay 5 DOUBLE Yes Yes Yes No

DLY6 Delay 6 DOUBLE Yes Yes Yes No

DLY7 Delay 7 DOUBLE Yes Yes Yes No

DLY8 Delay 8 DOUBLE Yes Yes Yes No

DLY9 Delay 9 DOUBLE Yes Yes Yes No

DLYA Delay 10 DOUBLE Yes Yes Yes No

DLYB Delay 11 DOUBLE Yes Yes Yes No

DLYC Delay 12 DOUBLE Yes Yes Yes No

DLYD Delay 13 DOUBLE Yes Yes Yes No

DLYE Delay 14 DOUBLE Yes Yes Yes No

DLYF Delay 15 DOUBLE Yes Yes Yes No

Operator Display Parameters

These parameters are used to present meaningful data to the operator. The Precision field (PREC) determines the
decimal precision for the VAL field when it is displayed. It is used when the get_precision record routine is called.

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
PREC Display Precision SHORT Yes Yes Yes No

NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

238 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Alarm Parameters

The sequence record has the alarm parameters common to all record types. Alarm Fields lists the fields related to
alarms that are common to all record types.

Record Support

Record Processing

Routine process implements the following algorithm:

1. First, PACT is set to TRUE, and the link selection is fetched. Depending on the selection mechanism chosen, the
appropriate set of link groups will be processed. If multiple link groups need to be processed they are done in
increasing numerical order, from LNK0 to LNKF.

2. When LNK_x_ is to be processed, the corresponding DLY_x_ value is first used to generate the requested time
delay, using the IOC’s Callback subsystem to perform subsequent operations. This means that although PACT
remains TRUE, the lockset that the sequence record belongs to will be unlocked for the duration of the delay
time (an unlock occurs even when the delay is zero).

3. After DLY_x_ seconds have expired, the value in DO_x_ is saved locally and a new value is read into DO_x_
through the link DOL_x_ (if the link is valid). Next the record’s timestamp is set, and the value in DO_x_ is
written through the LNK_x_ output link. If the value of DO_x_ was changed when it was read in a monitor event
is triggered on that field.

4. If any link groups remain to be processed, the next group is selected and the operations for that group are executed
again from step 2 above.

If the last link group has been processed, UDF is set to FALSE and the record’s timestamp is set.

5. Monitors are posted on VAL and SELN.

6. The forward link is scanned, PACT is set FALSE, and the process routine returns.

For the delay mechanism to operate properly, the record is normally processed asynchronously. The only time the
record will not be processed asynchronously is if it has nothing to do, because no link groups or only empty link groups
are selected for processing (groups where both DOL_x_ and LNK_x_ are unset or contain only a constant value).

1.5.29 State Record (state)

The state record is a means for a state program to communicate with the operator interface. Its only function is to
provide a place in the database through which the state program can inform the operator interface of its state by storing
an arbitrary ASCII string in its VAL field.

Note this record is deprecated and may be removed in a future EPICS release.

1.5. EPICS Record Types 239

EPICS Documentation Sandbox

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The state record has the standard fields for specifying under what circumstances it will be processed. These fields are
listed in Scan Fields.

Operator Display Parameters

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Alarm Parameters

The state record has the alarm parameters common to all record types. Alarm Fields lists the fields related to alarms
that are common to all record types.

Run-time Parameters

These parameters are used by the application code to convey the state of the program to the operator interface. The
VAL field holds the string retrieved from the state program. The OVAL is used to implement monitors for the VAL
field. When the string in OVAL differs from the one in VAL, monitors are triggered. They represent the current state
of the sequence program.

Field Summary Type DCT Default Read Write CA PP
VAL Value STRING [20] Yes Yes Yes Yes

OVAL Prev Value STRING [20] No Yes No No

Record Support

Record Support Routines

process

long (*process)(struct dbCommon *precord)

process() triggers monitors on VAL when it changes and scans the forward link if necessary.

240 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

1.5.30 String Input Record (stringin)

The string input record retrieves an arbitrary ASCII string of up to 40 characters. Several device support routines are
available, all of which are soft device support for retrieving values from other records or other software components.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The string input record has the standard fields for specifying under what circumstances it will be processed. These
fields are listed in Scan Fields.

Input Specification

The INP field determines where the string input record gets its string. It can be a database or channel access link, or
a constant. If constant, the VAL field is initialized with the constant and can be changed via dbPuts. Otherwise, the
string is read from the specified location each time the record is processed and placed in the VAL field. The maximum
number of characters that the string in VAL can be is 40. In addition, the appropriate device support module must be
entered into the DTYP field.

Field Summary Type DCT Default Read Write CA PP
VAL Current Value STRING [40] Yes Yes Yes Yes

INP Input Specification INLINK Yes Yes Yes No

DTYP Device Type DEVICE Yes Yes Yes No

Monitor Parameters

These parameters are used to specify when the monitor post should be sent by monitor() routine. There are two
possible choices:

Menu stringinPOST

Index Identifier Choice String
0 stringinPOST_OnChange On Change
1 stringinPOST_Always Always

APST is used for archiver monitors and MPST is for all other type of monitors.

Field Summary Type DCT Default Read Write CA PP
MPST Post Value Monitors MENU stringinPOST Yes Yes Yes No

APST Post Archive Monitors MENU stringinPOST Yes Yes Yes No

1.5. EPICS Record Types 241

EPICS Documentation Sandbox

Operator Display Parameters

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Alarm Parameters

The string input record has the alarm parameters common to all record types. Alarm Fields lists the fields related to
alarms that are common to all record types.

Run-time Parameters

The old value field (OVAL) of the string input is used to implement value change monitors for VAL. If VAL is not equal
to OVAL, then monitors are triggered.

Field Summary Type DCT Default Read Write CA PP
OVAL Previous Value STRING [40] No Yes No No

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML) is YES, the record is put in SIMS severity and the value is fetched through SIOL
(buffered in SVAL). SSCN sets a different SCAN mechanism to use in simulation mode. SDLY sets a delay (in sec)
that is used for asynchronous simulation processing.

See Input Simulation Fields for more information on simulation mode and its fields.

Field Summary Type DCT Default Read Write CA PP
SIML Simulation Mode Link INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuYesNo No Yes Yes No

SIOL Simulation Input Link INLINK Yes Yes Yes No

SVAL Simulation Value STRING [40] No Yes Yes Yes

SIMS Simulation Mode Severity MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

242 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Record Support

Record Support Routines

init_record

long (*init_record)(struct dbCommon *precord, int pass)

This routine initializes SIMM with the value of SIML if SIML type is CONSTANT link or creates a channel access
link if SIML type is PV_LINK. SVAL is likewise initialized if SIOL is CONSTANT or PV_LINK.

This routine next checks to see that device support is available and a record support read routine is defined. If either
does not exist, an error message is issued and processing is terminated.

If device support includes an init_record() routine it is called.

process

long (*process)(struct dbCommon *precord)

See “Record Processing”.

Record Processing

Routine process implements the following algorithm:

1. Check to see that the appropriate device support module exists. If it doesn’t, an error message is issued and
processing is terminated with the PACT field still set to TRUE. This ensures that processes will no longer be
called for this record. Thus error storms will not occur.

2. readValue is called. See “Simulation Mode” for more information on simulation mode fields and how they affect
input.

3. If PACT has been changed to TRUE, the device support read routine has started but has not completed reading
a new input value. In this case, the processing routine merely returns, leaving PACT TRUE.

4. recGblGetTimeStamp() is called.

5. Check to see if monitors should be invoked.

• Alarm monitors are invoked if the alarm status or severity has changed.

• Archive and value change monitors are invoked if OVAL is not equal to VAL.

• NSEV and NSTA are reset to 0.

6. Scan forward link if necessary, set PACT FALSE, and return.

1.5. EPICS Record Types 243

EPICS Documentation Sandbox

Device Support

Fields Of Interest To Device Support

Each stringin input record must have an associated set of device support routines. The primary responsibility of the
device support routines is to obtain a new ASCII string value whenever read_stringin is called. The device support
routines are primarily interested in the following fields:

Field Summary Type DCT Default Read Write CA PP
PACT Record active UCHAR No Yes No No

DPVT Device Private NOACCESS No No No No

UDF Undefined UCHAR Yes 1 Yes Yes Yes
VAL Current Value STRING [40] Yes Yes Yes Yes

INP Input Specification INLINK Yes Yes Yes No

Device Support Routines

Device support consists of the following routines:

report

long report(int level)

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

init

long init(int after)

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

244 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

init_record

long init_record(dbCommon *prec)

This routine is optional. If provided, it is called by the record support init_record() routine.

get_ioint_info

long get_ioint_info(int cmd, dbCommon *precord, IOSCANPVT *ppvt)

This routine is called by the ioEventScan system each time the record is added or deleted from an I/O event scan list.
cmd has the value (0,1) if the record is being (added to, deleted from) an I/O event list. It must be provided for any
device type that can use the ioEvent scanner.

read_stringin

long read_stringin(stringinRecord *prec)

This routine must provide a new input value. It returns the following values:

• 0: Success. A new ASCII string is stored into VAL.

• Other: Error.

Device Support for Soft Records

The Soft Channel module reads a value directly into VAL.

Device support for DTYP getenv is provided for retrieving strings from environment variables. INST_IO addressing
@<environment variable> is used in the INP link field to select the desired environment variable.

1.5.31 String Output Record (stringout)

The stringout record is used to write an arbitrary ASCII string of up to 40 characters to other records or software
variables.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

1.5. EPICS Record Types 245

EPICS Documentation Sandbox

Scan Parameters

The string output record has the standard fields for specifying under what circumstances it will be processed. These
fields are listed in Scan Fields.

Desired Output Parameters

The string output record must specify from where it gets its desired output string. The first field that determines where
the desired output originates is the output mode select (OMSL) field, which can have two possible value: closed_loop
or supervisory. If supervisory is specified, DOL is ignored, the current value of VAL is written, and the VAL can
be changed externally via dbPuts at run-time. If closed_loop is specified, the VAL field’s value is obtained from the
address specified in the Desired Output Link field (DOL) which can be either a database link or a channel access link.

DOL can also be a constant, in which case VAL will be initialized to the constant value. However to be interpreted as
a constant instead of a CA link the constant can only be numeric, so string output records are best initialized by dirctly
setting the VAL field. Note that if DOL is a constant, OMSL cannot be closed_loop.

Field Summary Type DCT Default Read Write CA PP
VAL Current Value STRING [40] Yes Yes Yes Yes

DOL Desired Output Link INLINK Yes Yes Yes No

OMSL Output Mode Select MENU menuOmsl Yes Yes Yes No

Output Specification

The output link specified in the OUT field specifies where the string output record is to write its string. The link can
be a database or channel access link. If the OUT field is a constant, no output will be written.

In addition, the appropriate device support module must be entered into the DTYP field.

Field Summary Type DCT Default Read Write CA PP
OUT Output Specification OUTLINK Yes Yes Yes No

DTYP Device Type DEVICE Yes Yes Yes No

Monitor Parameters

These parameters are used to specify when the monitor post should be sent by monitor() routine. There are two
possible choices:

246 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Menu stringoutPOST

Index Identifier Choice String
0 stringoutPOST_OnChange On Change
1 stringoutPOST_Always Always

APST is used for archiver monitors and MPST is for all other type of monitors.

Field Summary Type DCT Default Read Write CA PP
MPST Post Value Monitors MENU stringoutPOST Yes Yes Yes No

APST Post Archive Monitors MENU stringoutPOST Yes Yes Yes No

Operator Display Parameters

These parameters are used to present meaningful data to the operator. These fields are used to display the value and
other parameters of the string output either textually or graphically.

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Run-time Parameters

The old value field (OVAL) of the string input is used to implement value change monitors for VAL. If VAL is not equal
to OVAL, then monitors are triggered.

Field Summary Type DCT Default Read Write CA PP
OVAL Previous Value STRING [40] No Yes No No

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML) is YES, the record is put in SIMS severity and the value is written through SIOL.
SSCN sets a different SCAN mechanism to use in simulation mode. SDLY sets a delay (in sec) that is used for asyn-
chronous simulation processing.

See Output Simulation Fields for more information on simulation mode and its fields.

1.5. EPICS Record Types 247

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
SIML Simulation Mode Link INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuYesNo No Yes Yes No

SIOL Simulation Output Link OUTLINK Yes Yes Yes No

SIMS Simulation Mode Severity MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

Alarm Parameters

The possible alarm conditions for the string output record are the SCAN, READ, and INVALID alarms. The severity
of the first two is always MAJOR and not configurable.

The IVOA field specifies an action to take when the INVALID alarm is triggered. When Set output to IVOV, the
value contained in the IVOV field is written to the output link during an alarm condition. See Invalid Output Action
Fields for more information on the IVOA and IVOV fields.

Alarm Fields lists the fields related to alarms that are common to all record types.

Field Summary Type DCT Default Read Write CA PP
IVOA INVALID output action MENU menuIvoa Yes Yes Yes No

IVOV INVALID output value STRING [40] Yes Yes Yes No

Record Support

Record Support Routines

init_record

long (*init_record)(struct dbCommon *precord, int pass)

This routine initializes SIMM if SIML is a constant or creates a channel access link if SIML is PV_LINK. If SIOL is
PV_LINK a channel access link is created.

This routine next checks to see that device support is available. The routine next checks to see if the device support
write routine is defined. If either device support or the device support write routine does not exist, an error message is
issued and processing is terminated.

If DOL is a constant, then the type double constant, if non-zero, is converted to a string and stored into VAL and UDF
is set to FALSE. If DOL type is a PV_LINK then dbCaAddInlink is called to create a channel access link.

If device support includes init_record(), it is called.

248 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

process

long (*process)(struct dbCommon *precord)

See “Record Processing”.

Record Processing

Routine process implements the following algorithm:

1. Check to see that the appropriate device support module exists. If it doesn’t, an error message is issued and
processing is terminated with the PACT field still set to TRUE. This ensures that processes will no longer be
called for this record. Thus error storms will not occur.

2. If PACT is FALSE and OMSL is CLOSED_LOOP, recGblGetLinkValue is called to read the current value of
VAL. See “Soft Output”. If the return status of recGblGetLinkValue is zero then UDF is set to FALSE.

3. Check severity and write the new value. See “Simulation Mode” and Invalid Output Action Fields for details on
how the simulation mode and the INVALID alarm conditions affect output.

4. If PACT has been changed to TRUE, the device support write output routine has started but has not completed
writing the new value. In this case, the processing routine merely returns, leaving PACT TRUE.

5. Check to see if monitors should be invoked.

• Alarm monitors are invoked if the alarm status or severity has changed.

• Archive and value change monitors are invoked if OVAL is not equal to VAL.

• NSEV and NSTA are reset to 0.

6. Scan forward link if necessary, set PACT FALSE, and return.

Device Support

Fields Of Interest To Device Support

Each stringout output record must have an associated set of device support routines. The primary responsibility of the
device support routines is to write a new value whenever write_stringout is called. The device support routines are
primarily interested in the following fields:

Field Summary Type DCT Default Read Write CA PP
PACT Record active UCHAR No Yes No No

DPVT Device Private NOACCESS No No No No

NSEV New Alarm Severity MENU menuAlarmSevr No Yes No No

NSTA New Alarm Status MENU menuAlarmStat No Yes No No

VAL Current Value STRING [40] Yes Yes Yes Yes

OUT Output Specification OUTLINK Yes Yes Yes No

1.5. EPICS Record Types 249

EPICS Documentation Sandbox

Device Support Routines

Device support consists of the following routines:

report

long report(int level)

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

init

long init(int after)

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

init_record

long init_record(dbCommon *prec)

This routine is optional. If provided, it is called by the record support init_record() routine.

get_ioint_info

long get_ioint_info(int cmd, dbCommon *precord, IOSCANPVT *ppvt)

This routine is called by the ioEventScan system each time the record is added or deleted from an I/O event scan list.
cmd has the value (0,1) if the record is being (added to, deleted from) an I/O event list. It must be provided for any
device type that can use the ioEvent scanner.

write_stringout

long write_stringout(stringoutRecord *prec)

This routine must output a new value. It returns the following values:

• 0: Success.

• Other: Error.

250 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Device Support for Soft Records

The Soft Channel device support module writes the current value of VAL.

Device support for DTYP stdio is provided for writing values to the stdout, stderr, or errlog streams. INST_IO
addressing @stdout, @stderr or @errlog is used on the OUT link field to select the desired stream.

1.5.32 Sub-Array Record (subArray)

The normal use for the subArray record type is to obtain sub-arrays from waveform records. Setting either the number
of elements (NELM) or index (INDX) fields causes the record to be processed anew so that applications in which the
length and position of a sub-array in a waveform record vary dynamically can be implemented using standard EPICS
operator interface tools.

The first element of the sub-array, that at location INDX in the referenced waveform record, can be displayed as a scalar,
or the entire subarray (of length NELM) can be displayed in the same way as a waveform record. If there are fewer
than NELM elements in the referenced waveform after the INDX, only the number of elements actually available are
returned, and the number of elements read field (NORD) is set to reflect this. This record type does not support writing
new values into waveform records.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The subArray record has the standard fields for specifying under what circumstances the record will be processed.
These fields are listed in Scan Fields.

Read Parameters

The subArray’s input link (INP) should be configured to reference the Waveform record. It should specify the VAL
field of a Waveform record. The INP field can be a channel access link, in addition to a database link.

In addition, the DTYP field must specify a device support module. Currently, the only device support module is Soft
Channel.

Field Summary Type DCT Default Read Write CA PP
INP Input Specification INLINK Yes Yes Yes No

DTYP Device Type DEVICE Yes Yes Yes No

1.5. EPICS Record Types 251

EPICS Documentation Sandbox

Array Parameters

These parameters determine the number of array elements (the array length) and the data type of those elements. The
Field Type of Value (FTVL) field determines the data type of the array.

The user specifies the maximum number of elements that can be read into the subarray in the MALM field. This number
should normally be equal to the number of elements of the Waveform array (found in the Waveform’s NELM field).
The MALM field is used to allocate memory. The subArray’s Number of Elements (NELM) field is where the user
specifies the actual number of elements that the subArray will extract. It should of course be no greater than MALM;
if it is, the record processing routine sets it equal to MALM.

The INDX field determines the offset of the subArray record’s array in relation to the Waveform’s. For instance, if
INDX is 2, then the subArray will read NELM elements starting with the third element of the Waveform’s array. Thus,
it equals the index number of the Waveform’s array.

The actual sub-array is referenced by the VAL field.

Field Summary Type DCT Default Read Write CA PP
FTVL Field Type of Value MENU menuFtype Yes Yes No No

VAL Value Set by FTVL No Yes Yes Yes

MALM Maximum Elements ULONG Yes 1 Yes No No
NELM Number of Elements ULONG Yes 1 Yes Yes Yes
INDX Substring Index ULONG Yes Yes Yes Yes

Operator Display Parameters

These parameters are used to present meaningful data to the operator. They display the value and other parameters of
the subarray record either textually or graphically.

EGU is a string of up to 16 characters describing the engineering units (if any) of the values which the subArray holds.
It is retrieved by the get_units() record support routine.

The HOPR and LOPR fields set the upper and lower display limits for the sub-array elements. Both the
get_graphic_double() and get_control_double() record support routines retrieve these fields.

The PREC field determines the floating point precision with which to display VAL. It is used whenever the
get_precision() record support routine is called.

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

252 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
EGU Engineering Units STRING [16] Yes Yes Yes No

HOPR High Operating Range DOUBLE Yes Yes Yes No

LOPR Low Operating Range DOUBLE Yes Yes Yes No

PREC Display Precision SHORT Yes Yes Yes No

NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Alarm Parameters

The subarray record has the alarm parameters common to all record types. Alarm Fields lists the fields related to alarms
that are common to all record types.

Run-time Parameters

These fields are not configurable by the user. They are used for the record’s internal processing or to represent the
current state of the record.

The NORD field holds the number of elements that were actually read into the array. It will be less than NELM
whenever the sum of the NELM and INDX fields exceeds the number of existing elements found in the source array.

BPTR contains a pointer to the record’s array.

Field Summary Type DCT Default Read Write CA PP
NORD Number elements read LONG No Yes No No

BPTR Buffer Pointer NOACCESS No No No No

Record Support

Record Support Routines

init_record

long (*init_record)(struct dbCommon *precord, int pass)

Using MALM and FTVL, space for the array is allocated. The array address is stored in BPTR. This routine checks
to see that device support is available and a device support read routine is defined. If either does not exist, an error
message is issued and processing is terminated. If device support includes init_record(), it is called.

1.5. EPICS Record Types 253

EPICS Documentation Sandbox

process

long (*process)(struct dbCommon *precord)

See “Record Processing”.

cvt_dbaddr

long (*cvt_dbaddr)(struct dbAddr *paddr)

This is called by dbNameToAddr(). It makes the dbAddr structure refer to the actual buffer holding the result.

get_array_info

long (*get_array_info)(struct dbAddr *paddr, long *no_elements, long *offset)

Retrieves NORD.

put_array_info

long (*put_array_info)(struct dbAddr *paddr, long nNew)

Sets NORD.

get_graphic_double

long (*get_graphic_double)(struct dbAddr *paddr, struct dbr_grDouble *p)

For the elements in the array, this routine routines HOPR and LOPR. For the INDX field, this routine returns MALM
- 1 and 0. For NELM, it returns MALM and 1. For other fields, it calls recGblGetGraphicDouble().

get_control_double

long (*get_control_double)(struct dbAddr *paddr, struct dbr_ctrlDouble *p)

For array elements, this routine retrieves HOPR and LOPR. Otherwise, recGblGetControlDouble() is called.

254 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

get_units

long (*get_units)(struct dbAddr *paddr, char *units)

Retrieves EGU.

get_precision

long (*get_precision)(const struct dbAddr *paddr, long *precision)

Retrieves PREC.

Record Processing

Routine process implements the following algorithm:

1. Check to see that the appropriate device support module exists. If it doesn’t, an error message is issued and
processing is terminated with the PACT field still set to TRUE. This ensures that processes will no longer be
called for this record. Thus error storms will not occur.

2. Sanity check NELM and INDX. If NELM is greater than MALM it is set to MALM. If INDX is greater than or
equal to MALM it is set to MALM-1.

3. Call the device support’s read_sa() routine. This routine is expected to place the desired sub-array at the
beginning of the buffer and set NORD to the number of elements of the sub-array that were read.

4. If PACT has been changed to TRUE, the device support read operation has started but has not completed writing
the new value. In this case, the processing routine merely returns, leaving PACT TRUE. Otherwise, process sets
PACT TRUE at this time. This asynchronous processing logic is not currently used but has been left in place.

5. Check to see if monitors should be invoked.

• Alarm monitors are invoked if the alarm status or severity has changed.

• Archive and value change monitors are always invoked.

• NSEV and NSTA are reset to 0.

6. Scan forward link if necessary, set PACT FALSE, and return.

Device Support

Fields Of Interest To Device Support

The device support routines are primarily interested in the following fields:

1.5. EPICS Record Types 255

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
PACT Record active UCHAR No Yes No No

DPVT Device Private NOACCESS No No No No

UDF Undefined UCHAR Yes 1 Yes Yes Yes
NSEV New Alarm Severity MENU menuAlarmSevr No Yes No No

NSTA New Alarm Status MENU menuAlarmStat No Yes No No

INP Input Specification INLINK Yes Yes Yes No

FTVL Field Type of Value MENU menuFtype Yes Yes No No

MALM Maximum Elements ULONG Yes 1 Yes No No
NELM Number of Elements ULONG Yes 1 Yes Yes Yes
INDX Substring Index ULONG Yes Yes Yes Yes

BPTR Buffer Pointer NOACCESS No No No No

NORD Number elements read LONG No Yes No No

Device Support Routines (devSASoft.c)

Device support consists of the following routines:

long report(int level)

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

256 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

long init(int after)

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

init_record

long init_record(subArrayRecord *prec)

This routine is called by the record support init_record() routine.

read_sa

long read_sa(subArrayRecord *prec)

Enough of the source waveform is read into BPTR, from the beginning of the source, to include the requested sub-array.
The sub-array is then copied to the beginning of the buffer. NORD is set to indicate how many elements of the sub-array
were acquired.

Device Support For Soft Records

Only the device support module Soft Channel is currently provided.

Soft Channel

INP is expected to point to an array field of a waveform record or similar.

1.5.33 Subroutine Record (sub)

The subroutine record is used to call a C initialization routine and a recurring scan routine. There is no device support
for this record.

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The subroutine record has the standard fields for specifying under what circumstances it will be processed. These fields
are described in Scan Fields.

1.5. EPICS Record Types 257

EPICS Documentation Sandbox

Read Parameters

The subroutine record has twelve input links (INPA-INPL), each of which has a corresponding value field (A-L). These
fields are used to retrieve and store values that can be passed to the subroutine that the record calls.

The input links can be either channel access or database links, or constants. When constants, the corresponding value
field for the link is initialized with the constant value and the field’s value can be changed at run-time via dbPuts.
Otherwise, the values for (A-F) are fetched from the input links when the record is processed.

258 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
INPA Input A INLINK Yes Yes Yes No

INPB Input B INLINK Yes Yes Yes No

INPC Input C INLINK Yes Yes Yes No

INPD Input D INLINK Yes Yes Yes No

INPE Input E INLINK Yes Yes Yes No

INPF Input F INLINK Yes Yes Yes No

INPG Input G INLINK Yes Yes Yes No

INPH Input H INLINK Yes Yes Yes No

INPI Input I INLINK Yes Yes Yes No

INPJ Input J INLINK Yes Yes Yes No

INPK Input K INLINK Yes Yes Yes No

INPL Input L INLINK Yes Yes Yes No

A Value of Input A DOUBLE No Yes Yes Yes

B Value of Input B DOUBLE No Yes Yes Yes

C Value of Input C DOUBLE No Yes Yes Yes

D Value of Input D DOUBLE No Yes Yes Yes

E Value of Input E DOUBLE No Yes Yes Yes

F Value of Input F DOUBLE No Yes Yes Yes

G Value of Input G DOUBLE No Yes Yes Yes

H Value of Input H DOUBLE No Yes Yes Yes

I Value of Input I DOUBLE No Yes Yes Yes

J Value of Input J DOUBLE No Yes Yes Yes

K Value of Input K DOUBLE No Yes Yes Yes

L Value of Input L DOUBLE No Yes Yes Yes

1.5. EPICS Record Types 259

EPICS Documentation Sandbox

Subroutine Connection

These fields are used to connect to the C subroutine. The name of the subroutine should be entered in the SNAM field.

Field Summary Type DCT Default Read Write CA PP
INAM Init Routine Name STRING [40] Yes Yes No No

SNAM Subroutine Name STRING [40] Yes Yes Yes No

Operator Display Parameters

These parameters are used to present meaningful data to the operator. They display the value and other parameters of
the subroutine either textually or graphically.

EGU is a string of up to 16 characters that could describe any units used by the subroutine record. It is retrieved by the
get_units record support routine.

The HOPR and LOPR fields set the upper and lower display limits for the VAL, A-L, LA-LL, HIHI, LOLO, LOW,
and HIGH fields. Both the get_graphic_double and get_control_double record support routines retrieve these
fields.

The PREC field determines the floating point precision with which to display VAL. It is used whenever the
get_precision record support routine is called.

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Field Summary Type DCT Default Read Write CA PP
EGU Engineering Units STRING [16] Yes Yes Yes No

HOPR High Operating Range DOUBLE Yes Yes Yes No

LOPR Low Operating Range DOUBLE Yes Yes Yes No

PREC Display Precision SHORT Yes Yes Yes No

NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

Alarm Parameters

The possible alarm conditions for subroutine records are the SCAN, READ, limit alarms, and an alarm that can be
triggered if the subroutine returns a negative value. The SCAN and READ alarms are called by the record or device
support routines. The limit alarms are configured by the user in the HIHI, LOLO, HIGH, and LOW fields using
numerical values. They apply to the VAL field. For each of these fields, there is a corresponding severity field which
can be either NO_ALARM, MINOR, or MAJOR.

The BRSV field is where the user can set the alarm severity in case the subroutine returns a negative value.

Alarm Fields lists the fields related to alarms that are common to all record types.

260 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
HIHI Hihi Alarm Limit DOUBLE Yes Yes Yes Yes

HIGH High Alarm Limit DOUBLE Yes Yes Yes Yes

LOW Low Alarm Limit DOUBLE Yes Yes Yes Yes

LOLO Lolo Alarm Limit DOUBLE Yes Yes Yes Yes

HHSV Hihi Severity MENU menuAlarmSevr Yes Yes Yes Yes

HSV High Severity MENU menuAlarmSevr Yes Yes Yes Yes

LSV Low Severity MENU menuAlarmSevr Yes Yes Yes Yes

LLSV Lolo Severity MENU menuAlarmSevr Yes Yes Yes Yes

BRSV Bad Return Severity MENU menuAlarmSevr Yes Yes Yes Yes

HYST Alarm Deadband DOUBLE Yes Yes Yes No

Monitor Parameters

These parameters are used to determine when to send monitors placed on the VAL field. The appropriate monitors are
invoked when VAL differs from the values in the ALST and MLST run-time fields, i.e., when the value of VAL changes
by more than the deadband specified in these fields. The ADEL and MDEL fields specify a minimum delta which the
change must surpass before the value-change monitors are invoked. If these fields have a value of zero, everytime the
value changes, a monitor will be triggered; if they have a value of -1, everytime the record is processed, monitors are
triggered. The ADEL field is used by archive monitors and the MDEL field for all other types of monitors.

Field Summary Type DCT Default Read Write CA PP
ADEL Archive Deadband DOUBLE Yes Yes Yes No

MDEL Monitor Deadband DOUBLE Yes Yes Yes No

Run-time Parameters

These parameters are used by the run-time code for processing the subroutine record. They are not configured using
a database configuration tool. They represent the current state of the record. Many of them are used by the record
processing routines or the monitors.

VAL should be set by the subroutine. SADR holds the subroutine address and is set by the record processing routine.

The rest of these fields–LALM, ALST, MLST, and the LA-LL fields–are used to implement the monitors. For example,
when LA is not equal to A, the value-change monitors are called for that field.

1.5. EPICS Record Types 261

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
VAL Result DOUBLE No Yes Yes Yes

SADR Subroutine Address NOACCESS No No No No

LALM Last Value Alarmed DOUBLE No Yes No No

ALST Last Value Archived DOUBLE No Yes No No

MLST Last Value Monitored DOUBLE No Yes No No

LA Prev Value of A DOUBLE No Yes No No

LB Prev Value of B DOUBLE No Yes No No

LC Prev Value of C DOUBLE No Yes No No

LD Prev Value of D DOUBLE No Yes No No

LE Prev Value of E DOUBLE No Yes No No

LF Prev Value of F DOUBLE No Yes No No

LG Prev Value of G DOUBLE No Yes No No

LH Prev Value of H DOUBLE No Yes No No

LI Prev Value of I DOUBLE No Yes No No

LJ Prev Value of J DOUBLE No Yes No No

LK Prev Value of K DOUBLE No Yes No No

LL Prev Value of L DOUBLE No Yes No No

Record Support

Record Support Routines

init_record

long (*init_record)(struct dbCommon *precord, int pass)

For each constant input link, the corresponding value field is initialized with the constant value. For each input link
that is of type PV_LINK, a channel access link is created.

If an initialization subroutine is defined, it is located and called.

The processing subroutine is located and its address stored in SADR.

262 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

process

long (*process)(struct dbCommon *precord)

See “Record Processing”.

get_units

long (*get_units)(struct dbAddr *paddr, char *units)

Retrieves EGU.

get_precision

long (*get_precision)(const struct dbAddr *paddr, long *precision)

Retrieves PREC when VAL is the field being referenced. Otherwise, calls recGblGetPrec().

get_graphic_double

long (*get_graphic_double)(struct dbAddr *paddr, struct dbr_grDouble *p)

Sets the upper display and lower display limits for a field. If the field is VAL, A-L, LA-LL, HIHI, HIGH, LOW, or
LOLO, the limits are set to HOPR and LOPR, else if the field has upper and lower limits defined they will be used, else
the upper and lower maximum values for the field type will be used.

get_control_double

long (*get_control_double)(struct dbAddr *paddr, struct dbr_ctrlDouble *p)

Sets the upper control and the lower control limits for a field. If the field is VAL, A-L, LA-LL, HIHI, HIGH, LOW, or
LOLO, the limits are set to HOPR and LOPR, else if the field has upper and lower limits defined they will be used, else
the upper and lower maximum values for the field type will be used.

get_alarm_double

long (*get_alarm_double)(struct dbAddr *paddr, struct dbr_alDouble *p)

Sets the following values:

upper_alarm_limit = HIHI
upper_warning_limit = HIGH
lower_warning_limit = LOW
lower_alarm_limit = LOLO

1.5. EPICS Record Types 263

EPICS Documentation Sandbox

Record Processing

Routine process implements the following algorithm:

1. If PACT is FALSE then fetch all arguments.

2. Call the subroutine and check return value.

• Call subroutine

• Set PACT TRUE

• If return value is 1, return

3. Check alarms. This routine checks to see if the new VAL causes the alarm status and severity to change. If so,
NSEV, NSTA and LALM are set. It also honors the alarm hysteresis factor (HYST). Thus the value must change
by more than HYST before the alarm status and severity is lowered.

4. Check to see if monitors should be invoked.

• Alarm monitors are invoked if the alarm status or severity has changed.

• Archive and value change monitors are invoked if ADEL and MDEL conditions are met.

• Monitors for A-L are invoked if value has changed.

• NSEV and NSTA are reset to 0.

5. Scan forward link if necessary, set PACT FALSE, and return.

Example Synchronous Subroutine

This is an example subroutine that merely increments VAL each time process is called.

#include <stdio.h>
#include <dbDefs.h>
#include <subRecord.h>
#include <registryFunction.h>
#include <epicsExport.h>

static long subInit(struct subRecord *psub)
{

printf("subInit was called\n");
return 0;

}

static long subProcess(struct subRecord *psub)
{

psub->val++;
return 0;

}

epicsRegisterFunction(subInit);
epicsRegisterFunction(subProcess);

264 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Example Asynchronous Subroutine

This example for a VxWorks IOC shows an asynchronous subroutine. It uses (actually misuses) fields A and B. Field
A is taken as the number of seconds until asynchronous completion. Field B is a flag to decide if messages should be
printed. Lets assume A > 0 and B = 1. The following sequence of actions will occcur:

1. subProcess is called with pact FALSE. It performs the following steps.

• Computes, from A, the number of ticks until asynchronous completion should occur.

• Prints a message stating that it is requesting an asynchronous callback.

• Calls the vxWorks watchdog start routine.

• Sets pact TRUE and returns a value of 0. This tells record support to complete without checking alarms,
monitors, or the forward link.

2. When the time expires, the system wide callback task calls myCallback. myCallback locks the record, calls
process, and unlocks the record.

3. Process again calls subProcess, but now pact is TRUE. Thus the following is done:

• VAL is incremented.

• A completion message is printed.

• subProcess returns 0. The record processing routine will complete record processing.

#include <types.h> #include <stdio.h> #include <wdLib.h> #include <callback.h> #include <dbDefs.h> #in-
clude <dbAccess.h> #include <subRecord.h>

/* control block for callback*/ struct callback { epicsCallback callback; struct dbCommon *precord; WDOG_ID
wd_id; };

void myCallback(struct callback *pcallback) { struct dbCommon *precord=pcallback->precord; struct
rset *prset=(struct rset *)(precord->rset); dbScanLock(precord); (*prset->process)(precord); dbScanUn-
lock(precord); }

long subInit(struct subRecord *psub) { struct callback *pcallback; pcallback = (struct callback *)(cal-
loc(1,sizeof(struct callback))); psub->dpvt = (void *)pcallback; callbackSetCallback(myCallback,pcallback);
pcallback->precord = (struct dbCommon *)psub; pcallback->wd_id = wdCreate(); printf(“subInit was called\n”);
return 0; }

long subProcess(struct subRecord *psub) { struct callback pcallback=(struct callback)(psub->dpvt); / sub.inp
must be a CONSTANT / if (psub->pact) { psub->val++; if (psub->b) printf(“%s subProcess Completed\n”,
psub->name); return 0; } else { int wait_time = (long)(psub->a * vxTicksPerSecond); if (wait_time <= 0){
if (psub->b) printf(“%s subProcess sync processing\n”, psub->name); psub->pact = TRUE; return 0; } if
(psub->b){ callbackSetPriority(psub->prio, pcallback); printf(“%s Starting async processing\n”, psub->name);
wdStart(pcallback->wd_id, wait_time, callbackRequest, (int)pcallback); return 1; } } return 0; }

1.5.34 Waveform Record (waveform)

The waveform record type is used to interface waveform digitizers. The record stores its data in arrays. The array can
contain any of the supported data types.

1.5. EPICS Record Types 265

EPICS Documentation Sandbox

Parameter Fields

The record-specific fields are described below, grouped by functionality.

Scan Parameters

The waveform record has the standard fields for specifying under what circumstances the record will be processed.
These fields are listed in Scan Fields.

Read Parameters

These fields are configurable by the user to specify how and from where the record reads its data. How the INP field is
configured determines where the waveform gets its input. It can be a hardware address, a channel access or database
link, or a constant. Only in records that use soft device support can the INP field be a channel access link, a database
link, or a constant. Otherwise, the INP field must be a hardware address.

Fields related to waveform reading

Field Summary Type DCT Default Read Write CA PP
DTYP Device Type DEVICE Yes Yes Yes No

INP Input Specification INLINK Yes Yes Yes No

NELM Number of Elements ULONG Yes 1 Yes No No
FTVL Field Type of Value MENU menuFtype Yes Yes No No

RARM Rearm the waveform SHORT Yes Yes Yes Yes

The DTYP field must contain the name of the appropriate device support module. The values retrieved from the input
link are placed in an array referenced by VAL. (If the INP link is a constant, elements can be placed in the array via
dbPuts.) NELM specifies the number of elements that the array will hold, while FTVL specifies the data type of the
elements (follow the link in the table above for a list of the available choices).

The RARM field used to cause some device types to re-arm when it was set to 1, but we don’t know of any such devices
any more.

Operator Display Parameters

These parameters are used to present meaningful data to the operator. They display the value and other parameters of
the waveform either textually or graphically.

266 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Fields related to Operator Display

Field Summary Type DCT Default Read Write CA PP
EGU Engineering Units STRING [16] Yes Yes Yes No

HOPR High Operating Range DOUBLE Yes Yes Yes No

LOPR Low Operating Range DOUBLE Yes Yes Yes No

PREC Display Precision SHORT Yes Yes Yes No

NAME Record Name STRING [61] No Yes No No

DESC Descriptor STRING [41] Yes Yes Yes No

EGU is a string of up to 16 characters describing the units that the waveform measures. It is retrieved by the get_units
record support routine.

The HOPR and LOPR fields set the upper and lower display limits for array elements referenced by the VAL field. Both
the get_graphic_double and get_control_double record support routines retrieve these fields.

The PREC field determines the floating point precision with which to display the array values. It is used whenever the
get_precision record support routine is called.

See Fields Common to All Record Types for more on the record name (NAME) and description (DESC) fields.

Alarm Parameters

The waveform record has the alarm parameters common to all record types. Alarm Fields lists the fields related to
alarms that are common to all record types.

Monitor Parameters

These parameters are used to determine when to send monitors placed on the VAL field. The APST and MPST fields
are a menu with choices Always and On Change. The default is Always, thus monitors will normally be sent every
time the record processes. Selecting On Change causes a 32-bit hash of the VAL field buffer to be calculated and
compared with the previous hash value every time the record processes; the monitor will only be sent if the hash is
different, indicating that the buffer has changed. Note that there is a small chance that two different value buffers might
result in the same hash value, so for critical systems Always may be a better choice, even though it re-sends duplicate
data.

Field Summary Type DCT Default Read Write CA PP
APST Post Archive Monitors MENU waveformPOST Yes Yes Yes No

MPST Post Value Monitors MENU waveformPOST Yes Yes Yes No

HASH Hash of OnChange data. ULONG No Yes Yes No

1.5. EPICS Record Types 267

EPICS Documentation Sandbox

Menu waveformPOST

This menu defines the possible choices for APST and MPST fields:

Index Identifier Choice String
0 waveformPOST_Always Always
1 waveformPOST_OnChange On Change

Run-time Parameters

These parameters are used by the run-time code for processing the waveform. They are not configured using a config-
uration tool. Only the VAL field is modifiable at run-time.

VAL references the array where the waveform stores its data. The BPTR field holds the address of the array.

The NORD field indicates the number of elements that were read into the array.

The BUSY field permits asynchronous device support to collect array elements sequentially in multiple read cycles
which may call the record’s process() method many times before completing a read operation. Such a device would
set BUSY to TRUE along with setting PACT at the start of acquisition (it could also set NORD to 0 and use it to keep
track of how many elements have been received). After receiving the last element the read_wf() routine would clear
BUSY which informs the record’s process() method that the read has finished. Note that CA clients that perform
gets of the VAL field can see partially filled arrays when this type of device support is used, so the BUSY field is almost
never used today.

Field Summary Type DCT Default Read Write CA PP
VAL Value Set by FTVL No Yes Yes Yes

BPTR Buffer Pointer NOACCESS No No No No

NORD Number elements read ULONG No Yes No No

BUSY Busy Indicator SHORT No Yes No No

Simulation Mode Parameters

The following fields are used to operate the record in simulation mode.

If SIMM (fetched through SIML) is YES, the record is put in SIMS severity and the value is fetched through SIOL.
SSCN sets a different SCAN mechanism to use in simulation mode. SDLY sets a delay (in sec) that is used for asyn-
chronous simulation processing.

See Input Simulation Fields for more information on simulation mode and its fields.

268 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
SIML Simulation Mode Link INLINK Yes Yes Yes No

SIMM Simulation Mode MENU menuYesNo No Yes Yes No

SIOL Simulation Input Link INLINK Yes Yes Yes No

SIMS Simulation Mode Severity MENU menuAlarmSevr Yes Yes Yes No

SDLY Sim. Mode Async Delay DOUBLE Yes -1.0 Yes Yes No
SSCN Sim. Mode Scan MENU menuScan Yes 65535 Yes Yes No

Record Support

Record Support Routines

init_record

static long init_record(waveformRecord *prec, int pass)

Using NELM and FTVL space for the array is allocated. The array address is stored in the record.

This routine initializes SIMM with the value of SIML if SIML type is CONSTANT link or creates a channel access
link if SIML type is PV_LINK. VAL is likewise initialized if SIOL is CONSTANT or PV_LINK.

This routine next checks to see that device support is available and a device support read routine is defined. If either
does not exist, an error message is issued and processing is terminated

If device support includes init_record(), it is called.

process

static long process(waveformRecord *prec)

See “Record Processing” section below.

cvt_dbaddr

static long cvt_dbaddr(DBADDR *paddr)

This is called by dbNameToAddr. It makes the dbAddr structure refer to the actual buffer holding the result.

1.5. EPICS Record Types 269

EPICS Documentation Sandbox

get_array_info

static long get_array_info(DBADDR *paddr, long *no_elements, long *offset)

Obtains values from the array referenced by VAL.

put_array_info

static long put_array_info(DBADDR *paddr, long nNew)

Writes values into the array referenced by VAL.

get_units

static long get_units(DBADDR *paddr, char *units)

Retrieves EGU.

get_prec

static long get_precision(DBADDR *paddr, long *precision)

Retrieves PREC if field is VAL field. Otherwise, calls recGblGetPrec().

get_graphic_double

static long get_graphic_double(DBADDR *paddr, struct dbr_grDouble *pgd)

Sets the upper display and lower display limits for a field. If the field is VAL the limits are set to HOPR and LOPR,
else if the field has upper and lower limits defined they will be used, else the upper and lower maximum values for the
field type will be used.

Sets the following values:

upper_disp_limit = HOPR
lower_disp_limit = LOPR

get_control_double

static long get_control_double(DBADDR *paddr, struct dbr_ctrlDouble *pcd)

Sets the upper control and the lower control limits for a field. If the field is VAL the limits are set to HOPR and LOPR,
else if the field has upper and lower limits defined they will be used, else the upper and lower maximum values for the
field type will be used.

Sets the following values

270 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

upper_ctrl_limit = HOPR
lower_ctrl_limit = LOPR

Record Processing

Routine process implements the following algorithm:

1. Check to see that the appropriate device support module exists. If it doesn’t, an error message is issued and
processing is terminated with the PACT field still set to TRUE. This ensures that processes will no longer be
called for this record. Thus error storms will not occur.

2. Call device support read routine.

3. If PACT has been changed to TRUE, the device support read routine has started but has not completed writing
the new value. In this case, the processing routine merely returns, leaving PACT TRUE.

4. Check to see if monitors should be invoked.

• Alarm monitors are invoked if the alarm status or severity has changed.

• Archive and value change monitors are invoked if APST or MPST are Always or if the result of the hash
calculation is different.

• NSEV and NSTA are reset to 0.

5. Scan forward link if necessary, set PACT FALSE, and return.

Device Support

Fields Of Interest To Device Support

Each waveform record must have an associated set of device support routines. The primary responsibility of the device
support routines is to obtain a new array value whenever read_wf is called. The device support routines are primarily
interested in the following fields:

1.5. EPICS Record Types 271

EPICS Documentation Sandbox

Field Summary Type DCT Default Read Write CA PP
PACT Record active UCHAR No Yes No No

DPVT Device Private NOACCESS No No No No

NSEV New Alarm Severity MENU menuAlarmSevr No Yes No No

NSTA New Alarm Status MENU menuAlarmStat No Yes No No

INP Input Specification INLINK Yes Yes Yes No

NELM Number of Elements ULONG Yes 1 Yes No No
FTVL Field Type of Value MENU menuFtype Yes Yes No No

RARM Rearm the waveform SHORT Yes Yes Yes Yes

BPTR Buffer Pointer NOACCESS No No No No

NORD Number elements read ULONG No Yes No No

BUSY Busy Indicator SHORT No Yes No No

Device Support Routines

Device support consists of the following routines:

report

long report(int level)

This optional routine is called by the IOC command dbior and is passed the report level that was requested by the
user. It should print a report on the state of the device support to stdout. The level parameter may be used to output
increasingly more detailed information at higher levels, or to select different types of information with different levels.
Level zero should print no more than a small summary.

init

long init(int after)

This optional routine is called twice at IOC initialization time. The first call happens before any of the init_record()
calls are made, with the integer parameter after set to 0. The second call happens after all of the init_record()
calls have been made, with after set to 1.

272 Chapter 1. EPICS Record Reference Manual

EPICS Documentation Sandbox

init_record

long init_record(dbCommon *precord)

This routine is optional. If provided, it is called by the record support init_record() routine.

get_ioint_info

long get_ioint_info(int cmd, dbCommon *precord, IOSCANPVT *ppvt)

This routine is called by the ioEventScan system each time the record is added or deleted from an I/O event scan list.
cmd has the value (0,1) if the record is being (added to, deleted from) an I/O event list. It must be provided for any
device type that can use the ioEvent scanner.

read_wf

long read_wf(waveformRecord *prec)

This routine must provide a new input value. It returns the following values:

• 0: Success.

• Other: Error.

Device Support For Soft Records

The Soft Channel device support module is provided to read values from other records and store them in the VAL
field. If INP is a constant link, then read_wf() does nothing. In this case, the record can be used to hold a fixed set of
data or array values written from elsewhere. If INP is a valid link, the new array value is read from that link. NORD
is set to the number of items received.

If the INP link type is constant, VAL is set from it in the init_record() routine and NORD is also set at that time.

1.5. EPICS Record Types 273

EPICS Documentation Sandbox

274 Chapter 1. EPICS Record Reference Manual

CHAPTER

TWO

MRF TIMING SYSTEM REFERENCE

2.1 The MRF Timing System

The MRF Event System provides a complete timing distribution system including timing signal generation with only a
few components. The system is capable of generating subharmonic frequency signals, triggers and sequences of events,
etc. that are synchronous to an externally provided master clock reference and (optionally) another signal, for example
mains voltage phase. Support for timestamps makes the system a global timebase and allows attaching timestamps to
collected data and performed actions.

2.1.1 Timing System Principle of Operation

A basic setup of the timing system consists of an Event Generator (EVG), the distribution layer (Fan-Out, or Re-
peater/Concentrator) and Event Receivers (EVR). See the picture below.

In the basic use pattern (Configuration 1), the event stream is unidirectional, generated by the EVG and then multiplied
using repeaters to a number of event receivers. Synchronicity is preserved in the distribution layer. Finally, the EVRs
lock to the bitstream signal phase and thus are precisely synchronised to the bitstream, and consequently to each other
with a high precision.

There is also the possibility for bi-directional signaling (Configuration 2), where EVRs can not only receive the event
stream but also generate and send an event stream which will be forwarded “upstream” to the EVG via the distribution
layer. In the upwards direction, the distribution layer nodes act as concentrators, multiplexing the streams from below

275

EPICS Documentation Sandbox

into one stream going upwards. Obviously, as upstream events go through the concentrators, full determinism cannot
be guaranteed; phase synchronicity with the master clock is preserved though.

The event system functions by transmitting a bit stream, called here event stream, between the system components. The
event stream is a continuous flow of 16-bit data frames, generated and sent out by the event generator and sent out at
the “event clock” rate. The event clock rate is derived from an externally generated RF signal or optionally an on-board
clock generator. The event stream is phase locked to the clock reference.

The physical media for transmission is optical fiber. Standard networking components (SFP modules, multi- or single
mode fiber) are used to build the network. The network is fully dedicated to timing traffic, i.e., there is no need for
bandwidth sharing. This makes it possible for the system to react to asynchronous events without jitter, or the having
the need to schedule operations in advance.

Note: In earlier versions, to use the capabilities for bi-directional messaging, an EVR (hardware) was required to
reside in the same system as the Event Generator. In the 300-series (with delay compensation), the Event Master
(EVM) module contains two simplified EVRs, implemented in firmware, in addition to the EVG. In this case, a single
EVM is sufficient for most purposes.

Event Stream

The event stream protocol is based on 8b10b encoded characters, which means that the actual bit rate is higher than the
number of bits in the event frame. Ten bits are transmitted on the link for each 8-bit byte.

Each frame of the stream consists of two bytes. The first byte is dedicated for transmitting timing events, and always
contains an event code. The second byte can be configured for use in two different ways, as distributed bus bits or
synchronous data transmission. These will be explained in detail later.

(The above image shows a frame interval of 11.3 nanoseconds, corresponding to 88.0525 MHz event clock.)

Details about the event stream protocol can be found here.

2.1.2 Event Generator Overview

The Event Generator generates the event stream and sends it out to an array of Event Receivers.

The Event Generator has a number of functions:

• Generating and transmitting the timing events

• Transmitting the Distributed Bus bits

• Transmitting the Synchronous Data Buffer

• Acting as a source for timestamps.

276 Chapter 2. MRF Timing System Reference

https://en.wikipedia.org/wiki/Radio_frequency
https://en.wikipedia.org/wiki/Optical_fiber
https://en.wikipedia.org/wiki/Small_Form-factor_Pluggable
https://en.wikipedia.org/wiki/8b/10b_encoding

EPICS Documentation Sandbox

Timing Events

Event codes can be understood as instructions to indicate that something has to happen and a corresponding action
needs to be taken. The actions can be defined by the user.

For example, in the context of an accelerator, an event could be something like “send a beam pulse” and used to trigger
a particle source to produce and feed a pulse to the accelerator. The 8-bit event codes can be configured by the user to
have different meanings. The “send a beam pulse” event could be assigned the number 10, for example.

The event code will be inserted in the event stream and distributed via the distribution layer to several event receivers
(EVR).

On the receiving side, the EVR can be configured to act in a number of ways when it receives the code. Possible actions
can include:

• generating an hardware output (trigger) pulse, to trigger actions in some other components,

• generating a software interrupt, to trigger software actions

• actions related to managing timestamps

• a number of other possible actions, defined in the Event Receiver documentation.

Event Codes

A byte of 8 bits gives 256 different event codes. Actions for most of these codes can be freely configured by the user,
however a few codes have special predefined functions. The special function event codes are listed in the table below.

Event Code Code Name EVG Function EVR Function
0x00 Null Event Code - -
0x01–0x6F - User Defined User Defined
0x70 Seconds ‘0’ - Shift in ‘0’ to LSB of Seconds Shift Register
0x71 Seconds ‘1’ - Shift in ‘1’ to LSB of Seconds Shift Register
0x72–0x78 - User Defined User Defined
0x79 Stop Event Log - -
0x7A Heartbeat - -
0x7B Synchronise Prescalers - Synchronise Prescaler Outputs
0x7C Timestamp Counter Increment - Increment Timestamp Counter
0x7D Timestamp Counter Reset - -
0x7E Beacon event - -
0x7F End of Sequence - -
0x80-FF - User Defined User Defined

Table: Event Codes

Note: Beacon events are related to the active delay compensation and shall not be used in user applications.

The event codes are transmitted continuously. If there is no other event code to be transferred, the null event code
(0x00) is transmitted. Every now and then a special 8B10B character K28.5 is transmitted instead of the null event
code to allow the event receivers to synchronise on the correct word boundary on the serial bit stream.

2.1. The MRF Timing System 277

EPICS Documentation Sandbox

Sources for timing events

Timing events can be generated from a number of different sources: physical input signals, from an internal event
sequencer, software-generated events and events received from an upstream Event Generator.

Trigger Signal Inputs

There are eight trigger event inputs that can be configure to send out an event code on a stimulus. Each trigger event
has its own programmable event code register and various enable bits.

Event Sequencer

Event sequencers provide a method of transmitting (or “playing back”) sequences of events stored in random access
memory with defined timing. In the event generator there are two event sequencers. 8-bit event codes are stored in a
RAM table together with a 32-bit time value (event address) relative to the start of sequence. Both sequencers can hold
up to 2048 event code – time pairs.

The Sequencers may be triggered from several sources including software triggering, triggering on a multiplexed
counter output or AC mains voltage synchronization logic output.

Uses for the sequencer

The event sequencers are typically used for sending out a precisely timed sequence of events, like an accelerator machine
cycle. In this case, event codes that have been defined for different actions to be taken during the acceleration cycle
are placed in the sequencer RAM together with the time interval between sending out the events. This is the most
common use case for the sequencers. Typically the two sequencers are used in foreground/background combination,
where the foreground sequencer is transmitting events, and the background sequencer can be prepared by software for
the upcoming cycles. When the foreground sequencer finishes, the roles can be swapped and the backgound sequencer
made active.

A more exotic use case for the sequencer could be sending out a complicated signal pattern, using the RAM contents
in the recycle mode.

Software-generated Events

Events can be generated in software by writing into the Software Event register. This is useful for creating events that
occur based on some higher-level conditions; for example an operator requesting a beam dump in a circular accelerator.

Upstream Events

Event Generators may be cascaded. The bitstream receiver in the event generator includes a first-in-first-out (FIFO)
memory to synchronize incoming events which may be synchronized to a clock unrelated to the event clock.

278 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Distributed Bus

The distributed bus allows transmission of eight simultaneous signals with half of the event clock rate time resolution
(20 ns at 100 MHz event clock rate) from the event generator to the event receivers.

The distributed bus signals can be programmed to be available as hardware outputs on the event receiver.

Typical uses for the distributed bus are distributing hardware clock signals (that are slower that the event clock) or
distributing status signals to a large number of receivers.

Timestamping support

The event system supports timestamping by providing:

• Facilities to distribute a seconds value to all receivers

• Facilities to support generation of sub-second timestamps, usually in the event clock resolution

• Precisely latching the timestamp in an Event Receiver, on request or when an event code has been received.

The timestamp support guarantees that all event receivers (and generators) in the same distribution setup will have
precisely synchronized timestamps, up to the resolution of the event clock. For example, 100 MHz event clock results
in highest timestamp resolution of 10 nanoseconds.

The seconds value to be distributed has to be provided to the Event Generator. This is typically sourced from an external
GPS receiver.

Timestamp Generator

The model of time implemented by the MRF hardware is two 32-bit unsigned integers: counter, and “seconds”. The
counter is maintained by each EVR and incremented quickly. The value of the “seconds” is sent periodically from the
EVG at a lower rate.

Note that while it is referred to as “seconds” this value is an arbitrary integer that could have other meanings. Several
methods of sending the seconds value to the EVG are possible:

External hardware

In this method, hardware is used to communicate with a GPS receiver over a serial (RS232) link to receive the timestamp
and connect to two external inputs on the EVG. These inputs must be programmed to send the shift 0/1 codes.

Time from an NTP server

Time from a NTP server can be used without special hardware. This requires only a 1Hz (PPS) signal coming from the
same source as the NTP time. Several commercial vendors supply dedicated NTP servers with builtin GPS receivers
and 1Hz outputs. A software function is provided on the EVG which is triggered by the 1Hz signal. At the start of each
second it sends the next second (current+1), which will be latched after the following 1Hz tick.

2.1. The MRF Timing System 279

EPICS Documentation Sandbox

Synchronous Data buffer

A memory buffer of up to 2k bytes can be transmitted over the event link. This data buffer will be (synchronously)
available to all EVRs that receive the event stream.

The data to be transmitted is stored in a 2 kbyte dual-ported memory starting from the lowest address 0. This memory
is directly accessible via the memory interface in both generators and receivers.

Utility Functions in the Event Generator

Multiplexed Counters

Eight 32-bit multiplexed counters generate clock signals with programmable frequencies from event clock/2321 to event
clock/2. Even divisors create 50% duty cycle signals. The counter outputs may be programmed to trigger events, drive
distributed bus signals and trigger sequence RAMs. The output of multiplexed counter 7 is hard-wired to the mains
voltage synchronization logic.

280 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

AC Line Synchronisation

The Event Generator provides synchronization to the mains voltage frequency or another external clock. The mains
voltage frequency can be divided by an eight bit programmable divider. The output of the divider may be delayed by 0
to 25.5 ms by a phase shifter in 0.1 ms steps to be able to adjust the triggering position relative to mains voltage phase.

Event Clock RF Source

All operations on the event generator are synchronised to the event clock which is derived from an externally provided
RF clock. For laboratory testing purposes an on-board fractional synthesiser may be used to deliver the event clock.
The serial link bit rate is 20 times the event clock rate. The acceptable range for the event clock and bit rate is shown
in the following table.

During operation the reference frequency should not be changed more than ±100 ppm.

EventClock BitRate

Minimum 50 MHz 1.0 Gb/s
Maximum 142.8 MHz 2.9 Gb/s

2.1.3 Event Receiver Overview

Event Receivers decode timing events and signals from an optical event stream transmitted by an Event Generator.
Events and signals are received at the event clock rate. The event receivers lock to the phase of the upstream clock
reference. Event Receivers convert event codes that are transmitted by an Event Generator to hardware outputs. They
can also generate software interrupts and store the event codes with timestamps into FIFO memory to be read by a
CPU.

Functional Description

After recovering the event clock the Event Receiver demultiplexes the event stream to 8-bit event codes and 8-bit
distributed bus data. The distributed bus may be configured to share its bandwidth with time deterministic data trans-
mission.

Event Decoding

Actions that the Event Receiver does when an event is received are configured by setting up event mapping RAMs
in the EVR. The EVR provides two mapping RAMs of 256 × 128 bits each. The 128-bit data programmed into the
corresponding memory location pointed to by the event code determines what actions will be taken.

Heartbeat Monitor

Heartbeat facility can be used to detect the loss of communication between the EVR and the EVG. A heartbeat monitor
is provided to receive heartbeat events. Event code $7A is sent by the EVG periodically to reset the heartbeat counter.
If no heartbeat event is received the counter times out (approx. 1.6 s) and a heartbeat flag is set. The Event Receiver
may be programmed to generate a heartbeat interrupt at timeout.

2.1. The MRF Timing System 281

EPICS Documentation Sandbox

Event FIFO and Timestamp Events

The Event System provides a global timebase to attach timestamps to collected data and performed actions. The time
stamping system provides a 32-bit timestamp event counter and a 32-bit seconds counter. The timestamp event counter
either counts received timestamp counter clock events or runs freely with a clock derived from the event clock. The
event counter is also able to run on a clock provided on a distributed bus bit. When an event is received, the timestamp
counters are latched and stored in an event FIFO. This way, a software driver can pick up the exact timestamp when the
event was received and attach it to data, for example to an EPICS record timestamp.

Event Log

To debug or monitor the timing system performance, an event log facility is provided. Up to 512 events with times-
tamping information can be stored in the event log. The log is implemented as a ring buffer and is accessible as a
memory region. Logging events can be stopped by an event or software.

Distributed Bus and Data Transmission

The distributed bus is able to carry eight simultaneous signals sampled with half the event clock rate over the fibre optic
transmission media. The distributed bus signals may be output on programmable front panel outputs. The distributed
bus bandwidth is shared by transmission of a configurable size data buffer to up to 2 kbytes.

Pulse Generators

Programmable pulse generators give a number of ways to configure how hardware (electrical/optical) outputs work.
The structure of the pulse generation logic is shown in the figure below. Three signals from the mapping RAM control
the output of the pulse: trigger, ‘set’ pulse and ‘reset’ pulse. A trigger causes the delay counter to start counting, when
the end-of-count is reached the output pulse changes to the ‘set’ state and the width counter starts counting. At the end
of the width count the output pulse is cleared. The mapping RAM signal ‘set’ and ‘reset’ cause the output to change
state immediately without any delay.

Pulse Generator

282 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Prescalers

The Event Receiver provides a number of programmable prescalers. The frequencies are programmable subharmonics
of the event clock. A special event code “reset prescalers” ($7B) causes the prescalers to be synchronously reset in
the whole system, so the frequency outputs will be in same phase across all event receivers.

Programmable Front Panel, Universal I/O and Backplane Connections

All outputs are programmable: each pulse generator output, prescaler and distributed bus bit can be mapped to any
output. Starting with firmware version 0200 each output can have two sources which are logically OR’ed together.

Flip-flop Outputs (from FW version 0E0207)

There are 8 flip-flop outputs. Each of these is using two pulse generators, one for setting the output high and the other
one for resetting the output low.

Front Panel Universal I/O Slots

Universal I/O slots provide different types of output with exchangeable Universal I/O modules. Each module provides
two outputs e.g. two TTL output, two NIM output or two optical outputs. The source for these outputs is selected with
mapping registers.

Synchronous Data Transmission

Pre-DC (Delay Compensation) event systems provided a way to to transmit configurable size data packets over the event
system link. The buffer transmission size is configured in the Event Generator to up to 2 kbytes, and can be filled with
arbitrary data by the host system. The Event Receiver is able to receive buffers of any size from 4 bytes to 2 kbytes in
four byte (long word) increments.

Segmented Data Buffer

With the addition of delay compensation (300-series), a segmented data buffer has been introduced and it can coexist
with the configurable size data buffer. The segmented data buffer is divided into 16 byte segments that allow updating
only part of the buffer memory with the remaining segments left untouched.

External Event Input

An external hardware input is provided to be able to take an external pulse to generate an internal event. This event
will be handled as any other received event.

2.1. The MRF Timing System 283

EPICS Documentation Sandbox

2.1.4 Delay Compensation

In the 300-series event system, an active delay compensation feature was added. The delay compensation can be used to
stabilize the system against e.g, thermal drifts of optical cables that affect the signal propagation time in the system. With
different cable lengths, long distances and thermal gradients, the propagation delays could drift and disturb operation
in cases where long-term timing stability is critical.

With the active delay compensation feature the Event Generator and distribution layer have been integrated into a single
product, the Event Master (EVM).

Figure: Timing System Topology (Active Delay Compensation, series 300)

Topology ID

Each device in the timing system is given an unique identifier, the Topology ID. The master EVM is given ID
0x00000000. The downstream devices are given IDs with the least significant four bits representing the port num-
ber the device is connected to. Each EVM left shifts its own ID by four bits and assigns the downstream port number
to the lowest four bits to form the topology ID for the downstream devices in the next level. The topology IDs are
represented above the devices in the example layout.

284 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Active Delay Compensation

Delay compensation is achieved by measuring the propagation delay of events from the delay compensation master
EVM through the distribution network up to the Event Receivers. At the last stage the EVR is aware of the delay
through the network and adjusts an internal FIFO depth to match a programmed target delay value.

Timing System Master

The top node in the Timing System has the important task to generate periodic beacon events, to initialise and send out
delay compensation data using the segmented data buffer. Only the top node can be the master and only one master is
allowed in the system, all other EVMs have to be initialised in fan-out mode.

Figure: Timing System Master

The beacon generator sends out beacon events (code 0x7e) at a rate of event clock/215. When the next node receives
the beacon it sends it immediately back to the master which measures the propagation delay of the beacon event.

Timing System Fan-Out

In EVMs configured as fan-outs, beacons from the Timing System Master are received by the port U transceiver.
The recovered event clock from the transceiver is filtered by a clock cleaner external to the FPGA. Beacon events are
propagated through the fan-out and the propagation delay is measured. Further on the beacon events get sent out on the
fan-out ports and returned by the next level of fan-outs or event receivers. The loop delay for each port gets measured.

The fan-out receives the delay compensation segment on the segmented data buffer. This segment contains information
about the delay value from the Timing System Master up to this fan-out and the delay value quality. The fan-out modifies
the delay value and delay status fields in the DC segment for each port and sends out the new DC segments through
ports 1 through 8.

2.1. The MRF Timing System 285

EPICS Documentation Sandbox

Timing System Event Receiver

The Event Receiver receives the beacon event and returns it back immediately. Based on the recovered event clock
from the gigabit transceiver the event receiver generates a local phase shifted and cleaned event clock. The majority
of the event receiver logic is running in the cleaned event clock domain. A delay compensation FIFO separates the
transceiver receive logic from the main event receiver logic.

Figure 4: Timing System Event Receiver

The delay compensation segment of the segmented data buffer provides information of the fiber path delay from the
timing master up to the event receiver. The event receiver adjusts the phase of the cleaned event clock to control the
depth of the delay compensation FIFO.

2.2 Examples of usage scenarios

These examples use the MRF Linux API, to be found here. For register descriptions, see EVG registermap or EVR
registermap.

2.2.1 Setting Up a Event System with Delay Compensation

In this example we are setting up a test system consisting of two VME-EVM-300 boards and to VME- EVR-300 boards.
The first EVM (EVM1) is configured as the master and the seconds EVM (EVM2) as a fan-out. One EVR (EVR1)
will be connected to the master (EVM1) and the other EVR (EVR2) to the fan-out (EVM2). The example setup is
represented here:

286 Chapter 2. MRF Timing System Reference

https://github.com/jpietari/mrf-linux-api

EPICS Documentation Sandbox

Figure: Example Setup

Initializing Master EVG

First we need to configure the master EVG to use the external RF input reference clock divided by four. After changing
the clock source we need to reload the fractional synthesizer control word to force an internal reset.

The next step is to tell the top EVG that it is the master EVG and enable its beacon generator and delay compensation
master responsibilities. Please note that the highest EVG in the system has to be the system master and if delay com-
pensation is used it also has to have the beacon generator enabled. Only one EVG/EVM can be the system master and
only one EVG is allowed to have the beacon generator enabled.

API calls Register access

EvgSetRFInput(evm1, 1, 3); # *(evm1+0x50) = 0xc1030000;
EvgSetFracDiv(evm1, 0x0891c100); # *(evm1+0x80) = 0x0891c100;
EvgSystemMasterEnable(evm1, 1); # *(evm1+0x04) = 0xe0c00000;
EvgBeaconEnable(evm1, 1);
EvgEnable(evm1, 1);

Initializing VME-EVM-300 as Fan-Out

The downstream EVM has to be configured to use the upstream EVG/EVM clock as its event clock and after this we
need to (re)load the fractional synthesizer control word.

We enable the EVM and please note that both the system master bit and beacon generator bit are disabled.

API calls Register access

EvgSetRFInput(evm2, 4, 0x0c); # *(evm2+0x50) = 0xc40c0000;
EvgSetFracDiv(evm2, 0x0891c100); # *(evm2+0x80) = 0x0891c100;
EvgEnable(evm2, 1); # *(evm2+0x04) = 0xe0000000;

2.2. Examples of usage scenarios 287

EPICS Documentation Sandbox

Initializing VME-EVR-300

We start with setting the fractional synthesizer operating frequency (reference for event clock) so that the EVR can lock
to the received event stream.

The delay compensation logic measures/calculates a path delay from the master EVM/EVG to the EVR which consist
of internal delays and fibre delays. The EVR has a receive FIFO and it adjusts the delay of this FIFO based on a target
delay value and the actual path delay value. The delay value is a 32 bit value with a 16 bit integer part and a 16 bit
fractional part. The integer part represents the delay in event clock cycles i.e. a value of 0x00010000 corresponds to
an actual delay of one event clock cycle which at this examples rate is 7 ns.

In this example we set the target delay to 0x02100000 which is 3.696s.

API calls Register access

EvrSetFracDiv(evr1, 0x0891c100); # *(evr1+0x80) = 0x0891c100;
EvrSetTargetDelay(evr1, 0x02100000); # *(evr1+0xb0) = 0x02100000;
EvrGetViolation(evr1, 1); # *(evr1+0x08) = 0x00000001;
EvrDCEnable(evr1, 1); # *(evr1+0x04) = 0x80400000;
EvrEnable(evr1, 1); |

The datapath delay value can be read from the EVR DCRxValue register at offset 0x0b8. For the example above with 2
m fiber patches the measured datapath delay value shows 0x0032cff0 (355.686 ns) for EVR1 and 0x00125eea (128.595
ns) for EVR2.

2.2.2 Generating an Event from AC input

A 50 Hz TTL level square wave signal is provided to the IN0 input on EVM1. We setup the input AC input divider to
divide by 5, set the AC input logic to trigger event trigger 0 and we configure event trigger 0 to send out event code
0x01.

API calls Register access

EvgSetACInput(evm1, 0, 0, 5, 0); # *(evm1+0x10) = 0x00000500;
EvgSetACMap(evm1, 0); # *(evm1+0x14) = 0x00000001;
EvgSetTriggerEvent(evm1, 0, 0x01, 1); # *(evm1+0x100) = 0x00000101;

2.2.3 Receiving an Event and Generating an Output Pulse

To generate a pulse on a received event code in the EVR we need to setup the mapping RAM to trigger a pulse generator
on an event and setup the pulse generator. We also need to map the pulse generator to the actual hardware output.

API calls Register access

EvrSetPulseMap(evr1, 0, 0x01, 0, -1, -1); # *(evr1+0x4014) = 0x00000001;
EvrSetPulseParams(evr1, 0, 0, 0, 1000); # *(evr1+0x20C) = 0x000003e8;
EvrSetPulseProperties(evr1, 0, 0, 0, 0, 1, 1); # *(evr1+0x200) = 0x00000003;
EvrSetUnivOutMap(evr1, 0, 0x3f00); # *(evr1+0x440) = 0x3f003f3f;
EvrMapRamEnable(evr1, 0, 1); # *(evr1+0x04) = 0x88400200;
EvrOutputEnable(evr1, 1);

Now we should see a 7s pulse on EVR1 UNIV0 output with a rate of 10 Hz. If we configure EVR2 the same way as
the EVR1 in this example we should see a similar pulse on its UNIV0 output aligned with the output of EVR1.

288 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

2.2.4 Event Receiver Standalone Operation

Starting from firmware version 0207 capability to use the EVR as a stand-alone unit has been added. Functionality
includes:

• Using the internal fractional synthesizer clock as a reference clock

• Generating internal events by software

• Generating internal event by one EVG type sequencer

• Generating internal event by external signals

• Internal events may be sent out on the TX link by setting the FWD bit for each event in the active mapping RAM

The example code below has been written for the mTCA-EVR-300, but with minor changes (remapping the outputs) it
can be used for other form factors as well.

int evr_sa(volatile struct MrfErRegs *pEr)
{
int i;
EvrEnable(pEr, 1);
if (!EvrGetEnable(pEr))
{
printf(ERROR_TEXT "Could not enable EVR!\n");
return -1;

}
EvrSetIntClkMode(pEr, 1);
/* Build configuration for EVR map RAMS */
{
int ram,code;
/* Setup MAP ram: event code 0x01 to 0x04 trigger pulse generators 0 through 3*/
ram = 0;
for (i = 0; i < 4; i++)

{
code = 1+i;
EvrSetLedEvent(pEr, ram, code, 1);
/* Pulse Triggers start at code 1 */
EvrSetPulseMap(pEr, ram, code, i, -1, -1);

}
/* Setup pulse generators and front panel TTL outputs*/
for (i = 0; i < 4; i++)
{
EvrSetPulseParams(pEr, i, 1, 100, 100);
EvrSetPulseProperties(pEr, i, 0, 0, 0, 1, 1);
EvrSetFPOutMap(pEr, i, 0x3f00 | i);

}

/* Setup Prescaler 0 */
EvrSetPrescaler(pEr, 0, 0x07ffff);
/* Write some RAM events*/
EvrSetSeqRamEvent(pEr, 0, 0, 0, 1);
EvrSetSeqRamEvent(pEr, 0, 1, 0x001ff, 2);
EvrSetSeqRamEvent(pEr, 0, 2, 0x002ff, 3);
EvrSetSeqRamEvent(pEr, 0, 3, 0x003ff, 4);
EvrSetSeqRamEvent(pEr, 0, 4, 0x04000, 0x7f);

(continues on next page)

2.2. Examples of usage scenarios 289

EPICS Documentation Sandbox

(continued from previous page)

/* Setup sequence RAM to trigger from prescaler 0 */
EvrSeqRamControl(pEr, 0, 1, 0, 0, 0, C_EVR_SIGNAL_MAP_PRESC+0);
EvrMapRamEnable(pEr, 0, 1);
EvrOutputEnable(pEr, 1);
return 0;

}

2.3 Event Master

Since the 300-series, Event Generator and Fanout/Concentrator are combined in the Event Master module that can be
configured for either use; an Event Generator or Fanout-Concentrator.

Block diagram of EVM configured as an Event Generator:

Block diagram of EVM configured as a Fanout/Concentrator:

290 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

The essential differences are in clocking and FIFOs.

2.4 Fanout and Concentrator

When configured as a Fanout/Concentrator, the EVM has basically two tasks:

• Multiplying the event stream from one input link to multiple (up to 8) output links.

• Concentrating the event streams from multiple links to one upwards link.

Fanout/concentrators play also an important role in the delay compensation.

In EVMs configured as fan-outs (DCMST = 0 and BCGEN = 0) beacons from the Timing System Master are received
by the port U transceiver. The recovered event clock from the transceiver is filtered by a clock cleaner external to the
FPGA. A FIFO separates the cleaned event clock domain from the recovered clock domain. The depth of the FIFO is
kept constant by adjusting the phase of the cleaned clock. Beacon events are propagated through the fan-out and the
propagation delay from port U to the fan-out ports 1 through 8 is measured. This delay value can be read from the
IntDCValue register.

Register map for this function can be found here.

2.4. Fanout and Concentrator 291

EPICS Documentation Sandbox

2.5 Event Generator

The Event Generator generates the event stream and sends it out to an array of Event Receivers.

The Event Generator has a number of functions:

• Generating and transmitting the timing events

• Transmitting the Distributed Bus bits

• Transmitting the Synchronous Data Buffer

• Acting as a source for timestamps.

Events are sent out by the event generator as event frames (words) which consist of an eight bit event code and an eight
bit distributed bus data byte. The event transfer rate is derived from an external RF clock or optionally an on-board
clock generator. The optical event stream transmitted by the Event Generator is phase locked to the clock reference.

Register map for Event Generator function can be found here.

2.5.1 Event Generation

Timing events can be generated from a number of different sources: input signals, from an internal event sequencer,
software-generated events and events received from an upstream Event Generator.

Only one event code may be transferred at a time. Should there be an event collision, i.e., two events should be sent
at the same time, the one that has higher priority will be sent first. Event source priorities are resolved in a priority
encoder.

Trigger Signal Inputs

There are eight trigger event inputs that can be configured to send out an event code on a stimulus. Each trigger event
has its own programmable event code register and various enable bits. The event code transmitted is determined by
contents of the corresponding event code register. The stimulus may be a detected rising edge on an external signal or
a rising edge of a multiplexed counter output.

Trigger Event 0 has also the option of being triggered by a rising edge of the synchronization logic output signal (that
is often used for synchronising with AC mains voltage).

The external inputs accept TTL level signals. The input logic is edge sensitive and the signals are subsequently syn-
chronized internally to the event clock.

292 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Event Sequencer

Event sequencers provide a method of transmitting or playing back sequences of events stored in random access memory
with defined timing. In the event generator there are two event sequencers. 8-bit event codes are stored in a RAM table
each attached with a 32-bit timestamp (event address) relative to the start of sequence. Both sequencers can hold up to
2048 event code – timestamp pairs.

Sequencer RAM Structure

The sequencer runs at the event clock rate. When the sequencer is triggered the internal event address counter starts
counting. The counter value is compared to the event address of the next event in the RAM table. When the counter
value matches or is greater than the timestamp in the RAM table, the attached event code is transmitted.

The time offset between two consecutive events in the RAM is allowed to be 1 to 232 sequence clock cycles i.e. the

2.5. Event Generator 293

EPICS Documentation Sandbox

internal event address counter rolls over to 0 when 0xffffffff is reached.

Starting with firmware version 0200 a mask field has been added. Bits in the mask field allow masking events from
being send out based on external signal input states or software mask bits.

There are four enable signals:

– When mask enable bit is active ‘1’, enable event transmission only when HW signal is active high or software mask
enable bit active ‘1’

And four disable signals:

– When mask disable bit is active ‘1’, disable event transmission when HW signal is active high or software mask
disable bit is active ‘1’.

The Sequencers may be triggered from several sources including software triggering, triggering on a multiplexed
counter output or AC mains voltage synchronization logic output.

The sequencer has three operating modes: single sequence, recycle and recycle with re-trigger (retrigger).

In the single sequence mode, the sequencer runs through the table until it reaches the end sequence code. After that,
the sequencer is disabled, the timestamp (event address) counter and the RAM address are reset. The sequencer has to
be re-enabled before it can run again.

In recycle mode, the sequence runs again immediately when it reaches the end sequence code. The sequencer then
restarts from the beginning of the RAM.

In the retrigger mode, the sequencer stops when it reaches the end sequence code and waits for a trigger. RAM address
and timestamp counter are both reset. When a new trigger arrives, the sequencer starts a new run. The difference to
the single sequence mode is that the sequencer does not get disabled at end of sequence.

The sequencers are enabled by writing a ‘1’ bit to SQxEN in the Sequence RAM control Register. The RAMs may
be disabled any time by writing a ‘1’ to SQxDIS bit. Disabling sequence RAMs does not reset the RAM address and
timestamp registers. By writing a ‘1’ to the bit SQxRES in the Control Register the sequencer is both disabled and the
RAM address and timestamp register is reset.

The contents of a sequencer RAM may be altered at any time, however, it is recommended only to modify RAM contents
when the RAM is disabled.

There are two special event codes which are not transmitted, the null event code 0x00 and end sequence code 0x7f.

The null event code may be used if the time between two consecutive events should exceed 232 event clock cycles by
inserting a null event with a timestamp value of 0xffffffff. In this case the sequencer time will roll over from 0xffffffff
to 0x00000000.

The end sequence code resets the sequencer RAM table address and timestamp register and depending on configura-
tion bits, disables the sequencer (single sequence, SQxSNG=1) or restarts the sequence either immediately (recycle
sequence, SQxREC=1) or waits for a new trigger (SQxREC=0).

294 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Sequencer Interrupt Support

The sequencers provide several interrupts: a sequence start and sequence stop interrupt and two interrupts based on the
position of the playback pointer in the sequencer RAM: a sequence halfway through interrupt and a sequence roll-over
interrupt. The sequence start interrupt is issued when a sequencer is in enabled state, gets triggered and was not running
before the trigger. A sequence stop interrupt is issued when the sequence is running and reaches the ‘end of sequence’
code.

Uses for the sequencer

The event sequencers are typically used for sending out a precisely timed sequence of events, like an accelerator machine
cycle. In this case, event codes that have been defined for different actions to be taken during the acceleration cycle
are placed in the sequencer RAM together with the time interval (event address) between sending out the events. This
is the most common use case for the sequencers. Typically the two sequencers are used in foreground/background
combination, where the foreground sequencer is transmitting events, and the background sequencer can be prepared by
software for the upcoming cycles. When the foreground sequencer finishes, the roles can be swapped and the backgound
sequencer made active.

A more exotic use case for the sequencer could be sending out a complicated signal pattern, using the RAM contents
in the recycle mode.

2.5. Event Generator 295

EPICS Documentation Sandbox

Software-generated Events

Events can be generated in software by writing into the Software Event register. This is useful for creating events that
occur based on some higher-level conditions; for example an operator requesting a beam dump in a circular accelerator.

Upstream Events

Event Generators may be cascaded. The bitstream receiver in the event generator includes a first-in-first-out (FIFO)
memory to synchronize incoming events which may be synchronized to a clock unrelated to the event clock. Usually
there are no events in the FIFO. An event code from an upstream EVG is transmitted as soon as there is no other event
code to be transmitted.

Figure: Upstream event processing.

2.5.2 Distributed Bus

The distributed bus allows transmission of eight simultaneous signals with half of the event clock rate time resolution
(20 ns at 100 MHz event clock rate) from the event generator to the event receivers.

Note: Hard/firmware before Delay Compensation

Before introduction of delay compensation, if the data transfer feature was not in use, the highest time resolution for
the distributed bus bits was equal to half of the event clock rate.

The source for distributed bus signals may be an external source or the signals may be generated with programmable
multiplexed counters (MXC) inside the event generator. The bits of the distributed bus from external signals are sampled
synchronously to the event clock.

The distributed bus signals can be programmed to be available as hardware outputs on the event receiver.

If there is an upstream EVG, the state of all distributed bus bits may be forwarded by the EVG.

296 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Figure: Distributed Bus signal source selection.

2.5.3 Timestamping support

The event system supports timestamping by providing:

• Facilities to distribute a seconds value to all receivers

• Facilities to support generation of sub-second timestamps, usually in the event clock resolution

• Precisely latching the timestamp in an Event Receiver, on request or when an event code has been received.

The timestamp support guarantees that all event receivers (and generators) in the same distribution will have precisely
synchronized timestamp, up to the resolution of the event clock. For example, 100 MHz event clock results in highest
timestamp resolution of 10 nanoseconds.

The seconds value to be distributed has to be provided to the Event Generator. This is typically sourced from an external
GPS receiver.

Timestamp Generator

The model of time implemented by the MRF hardware is two 32-bit unsigned integers: counter, and “seconds”. The
counter is maintained by each EVR and incremented quickly. The value of the “seconds” is sent periodically from the
EVG at a lower rate.

During each “second” 33 special codes (see sec. Event Codes) must be sent. The first 32 are the shift 0/1 codes which
contain the value of the next “second”. The last is the timestamp reset event. When received this code transfers the
new “second” value out of the shift register, and resets the counter to zero. These actions start the next “second”.

Note that while it is referred to as “seconds” this value is an arbitrary integer which can have other meanings. Currently
only one time model is implemented, but implementing others is possible.

Standard (aka “Light Source”) Time Model

In this model the “seconds” value is an actual 1Hz counter. The software default is the POSIX time of seconds since
1 Jan. 1970 UTC. Each new second is started with a trigger from an external 1Hz oscillator, usually a GPS receiver.
Most GPS receivers have a one pulse per second (PPS) output. Time is converted to the EPICS epoch (1 Jan. 1990)
for use in the IOC.

Several methods of sending the seconds value to the EVG are possible:

2.5. Event Generator 297

EPICS Documentation Sandbox

External hardware

In this method, hardware is used to communicate with a GPS receiver over a serial (RS232) link to receive the timestamp
and connect to two external inputs on the EVG. These inputs must be programmed to send the shift 0/1 codes.

Time from an NTP server

Time from a NTP server can be used without special hardware. This requires only a 1Hz (PPS) signal coming from
the same source as the NTP time. Several commerial vendors supply dedicated NTP servers with builtin GPS receivers
and 1Hz outputs. A software function is provided on the EVG which is triggered by the 1Hz signal. At the start of each
second it sends the next second (current+1), which will be latched after the following 1Hz tick.

Timestamping Inputs

Starting from firmware version E306 a few distributed bus input signals have dual function: transition board input
DBUS5-7 can be used to generate special event codes controlling the timestamping in Event Receivers.

The two clocks, timestamp clock and timestamp reset clock, are assumed to be rising edge aligned. In the EVG the
timestamp reset clock is sampled with the falling edge of the timestamp clock. This is to prevent a race condition
between the reset and clock signals. In the EVR the reset is synchronised with the timestamp clock.

The two seconds counter events are used to shift in a 32-bit seconds value between consecutive timestamp reset events.
In the EVR the value of the seconds shift register is transferred to the seconds counter at the same time the higher
running part of the timestamp counter is reset.

Logic has been added to automatically increment and send out the 32-bit seconds value. Using this feature requires the
two externally supplied clocks as shown above, but the events 0x70 and 0x71 get generated automatically.

After the rising edge of the slower clock on DBUS4, the internal seconds counter is incremented and the 32 bit binary
value is sent out LSB first as 32 events 0x70 and 0x71. The seconds counter can be updated by software by using the
TSValue and TSControl registers.

The distributed bus event inputs can be enabled independently through the distributed bus event enable register. The
events generated through these distributed bus input ports are given lowest priority.

298 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

2.5.4 Configurable Size Data Buffer

A buffer of up to 2k bytes can be transmitted over the event link. This data buffer will be (synchronously) available to
all EVRs that receive the event stream.

The data to be transmitted is stored in a 2 kbyte dual-ported memory starting from the lowest address 0. This memory
is directly accessible via the memory interface.

The transfer size is determined by bufsize register bits in four byte increments. The transmission is triggered by
software. Two flags tx_running and tx_complete represent the status of transmission. Transmission utilises two K-
characters to mark the start and end of the data transfer payload, the protocol looks following:

8B10B-character Description
K28.0 Start of data transfer
Dxx.x 1st data byte (address 0)
Dxx.x 2nd data byte (address 1)
Dxx.x 3rd data byte (address 2)
Dxx.x 4th data byte (address 3)
.
Dxx.x nth data byte (address n-1)
K28.1 End of data
Dxx.x Checksum (MSB)
Dxx.x Checksum(LSB)

Segmented Data Buffer Transmission

In addition to the configurable size data buffer a new way to transfer information is provided. The segmented data buffer
memory is divided into 128 segments of 16 bytes each and it is possible to transmit the contents of a single segment or
a block of consecutive segments without affecting contents of other segments.

With the introduction of active delay compensation in firmware version 0200, the use of the “data buffer mode” has
become mandatory. The active delay compensation logic does use the last segment of the segmented data buffer
memory for propagating delay compensation information and this segment is reserved for system use.

The data to be transmitted is stored in a 2 kbyte dual-ported memory starting from the lowest address 0. This memory
is directly accessible from the memory interface (VME, PCI). The transfer size is determined by bufsize register bits in
four byte increments. The transmission is triggered by software. Two flags, tx_running and tx_complete represent
the status of transmission.

2.5. Event Generator 299

EPICS Documentation Sandbox

Transmission utilises two K-characters to mark the start and end of the data transfer payload, the protocol looks follow-
ing:

8B10B-character Description
K28.2 Start of data transfer
Dxx.x Block address of 16 byte segment
Dxx.x 1st data byte (address 0)
Dxx.x 2nd data byte (address 1)
Dxx.x 3rd data byte (address 2)
Dxx.x 4th data byte (address 3)
.
Dxx.x nth data byte (address n-1)
K28.1 End of data
Dxx.x Checksum (MSB)
Dxx.x Checksum(LSB)

Segmented Data Transfer Example

Delay Compensation and Topology ID data

The last segment is reserved for system management and is used to propagate delay compensation and topology data.
The contents of the last segment are represented below. Please note that the word values are in little endian byte order.

segment byte 0 - 3 byte 4 - 7 byte 8 - 11 byte 12 - 15
127 DCDelay DCStatus reserved TopologyID

DCDelay represents the delay from DC master to receiving node. The value is a fixed point number with the point
between the two 16 bit words. The delay is measured in event clock cycles.

DCStatus shows the quality of the delay value: 1 - initial lock, 3 - locked with precision < event clock cycle, 7 - fine
precision.

TopologyID shows the geographical address of the node.

2.5.5 Programmable Outputs

All the outputs are programmable: multiplexed counters and distributed bus bits can be mapped to any output. The
mapping is shown in table below.

MappingID Signal
0 to 31 (Reserved)
32 Distributed bus bit 0 (DBUS0)
.
39 Distributed bus bit 7 (DBUS7)
40 Multiplexed Counter 0
.
47 Multiplexed Counter 7
48 AC trigger logic output
49 to 61 (Reserved)
62 Force output high (logic 1)
63 Force output low (logic 0)

300 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

2.5.6 Utility Functions in the Event Generator

Multiplexed Counters

Eight 32-bit multiplexed counters generate clock signals with programmable frequencies from event clock/2321 to event
clock/2. Even divisors create 50% duty cycle signals. The counter outputs may be programmed to trigger events, drive
distributed bus signals and trigger sequence RAMs. The output of multiplexed counter 7 is hard-wired to the mains
voltage synchronization logic.

Each multiplexed counter consists of a 32-bit prescaler register and a 31-bit count-down counter which runs at the
event clock rate. When count reaches zero, the output of a toggle flip-flop changes and the counter is reloaded from the
prescaler register. If the least significant bit of the prescaler register is one, all odd cycles are extended by one clock
cycle to support odd dividers. The multiplexed counters may be reset by software or hardware input. The reset state is
defined by the multiplexed counter polarity register.

Prescaler value DutyCycle Frequency at 125MHz Event Clock
0,1 not allowed undefined undefined
2 50/50 62.5 MHz
3 33/66 41.7 MHz
4 50/50 31.25 MHz
5 40/60 25 MHz
.
2321 approx. 50/50 0.029 Hz

2.5. Event Generator 301

EPICS Documentation Sandbox

AC Line Synchronisation

The Event Generator provides synchronization to the mains voltage frequency or another external clock. The mains
voltage frequency can be divided by an eight bit programmable divider. The output of the divider may be delayed by 0
to 25.5 ms by a phase shifter in 0.1 ms steps to be able to adjust the triggering position relative to mains voltage phase.
After this the signal synchronized to the event clock or the output of multiplexed counter 7. The option to synchronize
to an external clock provided in front panel TTL input IN1 or IN2 has been added in firmware version 22000207.

The phase shifter operates with a clock of 1 MHz which introduces jitter. If the prescaler and phase shifter are not
required this circuit may be bypassed. This also reduces jitter because the external trigger input is sampled directly
with the event clock.

2.5.7 Front Panel TTL Input with Phase Monitoring

Starting from firmware 22000207 a new phase select and phase monitoring feature for the front panel TTL inputs has
been added. This allows for monitoring the signal phase and selecting the sampling point of external signals that are
phase locked to the event clock.

302 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

The external signal is sampled with four phases of the event clock, 0°, 90°, 180° and 270° and synchronized to the
event clock. The signal being used for the internal FPGA logic is selected by the PHSEL bits in the phase monitoring
register.

The phase monitoring logic detects rising and falling edges of the incoming signal and stores the phase offset in two
registers PHRE for the rising edge and PHFE for the falling edge. The contents of the registers are updated on each
edge detected and the values can be reset to 0000 for PHRE and 1111 for PHFE by writing a ‘1’ to the PHCLR bit.

PHRE value Rising edge position
0000 Reset value, no edge detected
0001 Edge between 180° and 270°
0011 Edge between 90° and 180°
0111 Edge between 0° and 90°
1111 Edge between 270° and 0°

2.5. Event Generator 303

EPICS Documentation Sandbox

PHFE value Falling edge position
1111 Reset value, no edge detected
1110 Edge between 180° and 270°
1100 Edge between 90° and 180°
1000 Edge between 0° and 90°
0000 Edge between 270° and 0°

If the input signal is phase locked to the event clock the phase monitoring values should be stable or toggling between
two values if the signal is close to the clock sampling edge. A sampling point as far as possible from the transition point
should be selected. Selecting the correct edge is not automated. The edge position of interest should be monitored by
the user application and the correct phase should be selected by software.

PHRE value Rising edge position PHSEL
0000 Reset value, no edge detected

0001 Edge between 180° and 270° 01, sample at 90°
0001/0011 Edge around 180° 00, sample at 0°
0011 Edge between 90° and 180° 00, sample at 0°
0011/0111 Edge around 90° 11, sample at 270°
0111 Edge between 0° and 90° 11, sample at 270°
0111/1111 Edge around 0° 10, sample at 180°
1111 Edge between 270° and 0° 10, sample at 180°
1111/0001 Edge around 270° 01, sample at 90°

Table: Phase Monitoring Rising Edge Select Values

PHFE value Falling edge position PHSEL
1111 Reset value, no edge detected

1110 Edge between 180° and 270° 01, sample at 90°
1110/1100 Edge around 180° 00, sample at 0°
1100 Edge between 90° and 180° 00, sample at 0°
1100/1000 Edge around 90° 11, sample at 270°
1000 Edge between 0° and 90° 11, sample at 270°
1000/0000 Edge around 0° 10, sample at 180°
0000 Edge between 270° and 0° 10, sample at 180°
0000/1110 Edge around 270° 01, sample at 90°

Table: Phase Monitoring Falling Edge Select Values

In the DC firmware the distributed bus is operating at half rate of the event clock and when using an external clock with
an even sub-harmonic the phase of the distributed bus transmission is arbitrary after restarting the system. To overcome
this the phase monitoring inputs have a status bit that shows the phase of the distributed bus on the rising edge of the
external input. The user can monitor this bit and verify that the phase is correct each time the system is restarted. If
the phase is incorrect the phase may be toggled by writing a ‘1’ into the PHTOGG bit in the clock control register.

304 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

2.5.8 Event Clock RF Source

All operations on the event generator are synchronised to the event clock which is derived from an externally provided
RF clock. For laboratory testing purposes an on-board fractional synthesiser may be used to deliver the event clock.
The serial link bit rate is 20 times the event clock rate. The acceptable range for the event clock and bit rate is shown
in the following table.

During operation the reference frequency should not be changed more than ±100 ppm.

EventClock BitRate

Minimum 50 MHz 1.0 Gb/s
Maximum 142.8 MHz 2.9 Gb/s

RF Clock and Event Clock

The event clock may be derived from an external RF clock signal. The front panel RF input is 50 ohm terminated and
AC coupled to a LVPECL logic input, so either an ECL level clock signal or sine-wave signal with a level of maximum
+10 dBm can be used.

Divider RF Input Frequency Event Clock Bit Rate
÷1 50 MHz – 142.8 MHz 50 MHz–142.8 MHz 1.0 Gb/s – 2.9 Gb/s
÷2 100 MHz – 285.6 MHz 50 MHz–142.8 MHz 1.0 Gb/s – 2.9 Gb/s
÷3 150 MHz – 428.4 MHz 50 MHz–142.8 MHz 1.0 Gb/s – 2.9 Gb/s
÷4 200 MHz – 571.2 MHz 50 MHz–142.8 MHz 1.0 Gb/s – 2.9 Gb/s
÷5 250 MHz – 714 MHz 50 MHz–142.8 MHz 1.0 Gb/s – 2.9 Gb/s
÷6 300 MHz – 856.8 MHz 50 MHz–142.8 MHz 1.0 Gb/s – 2.9 Gb/s
÷7 350 MHz – 999.6 MHz 50 MHz–142.8 MHz 1.0 Gb/s – 2.9 Gb/s
÷8 400 MHz – 1.142 GHz 50 MHz–142.8 MHz 1.0 Gb/s – 2.9 Gb/s
÷9 450 MHz – 1.285 MHz 50 MHz–142.8 MHz 1.0 Gb/s – 2.9 Gb/s
÷10 500MHz–1.428GHz 50 MHz–142.8 MHz 1.0 Gb/s – 2.9 Gb/s
÷11 550MHz–1.571GHz 50 MHz–142.8 MHz 1.0 Gb/s – 2.9 Gb/s
÷12 600 MHz – 1.6 GHz 50 MHz–133 MHz 1.0 Gb/s – 2.667 Gb/s
÷14 700MHz–1.6GHz *) 50 MHz–114 MHz 1.0 Gb/s – 2.286 Gb/s
÷15 750MHz–1.6GHz *) 50 MHz–107 MHz 1.0 Gb/s – 2.133 Gb/s
÷16 800MHz–1.6GHz *) 50 MHz–100 MHz 1.0 Gb/s – 2.0 Gb/s
÷17 850MHz–1.6GHz *) 50 MHz–94 MHz 1.0 Gb/s – 1.882 Gb/s
÷18 900MHz–1.6GHz *) 50 MHz–88 MHz 1.0 Gb/s – 1.777 Gb/s
÷19 950MHz–1.6GHz *) 50 MHz–84 MHz 1.0 Gb/s – 1.684 Gb/s
÷20 1.0GHz–1.6GHz *) 50 MHz–80 MHz 1.0 Gb/s – 1.600 Gb/s
÷21 1.05GHz–1.6GHz *) 50 MHz–76 MHz 1.0 Gb/s – 1.523 Gb/s
÷22 1.1GHz–1.6GHz *) 50 MHz–72 MHz 1.0 Gb/s – 1.454 Gb/s
÷23 1.15GHz–1.6GHz *) 50 MHz–69 MHz 1.0 Gb/s – 1.391 Gb/s
÷24 1.2GHz–1.6GHz *) 50 MHz–66 MHz 1.0 Gb/s – 1.333 Gb/s
÷25 1.25GHz–1.6GHz *) 50 MHz–64 MHz 1.0 Gb/s – 1.280 Gb/s
÷26 1.3GHz–1.6GHz *) 50 MHz–61 MHz 1.0 Gb/s – 1.230 Gb/s
÷27 1.35GHz–1.6GHz *) 50 MHz–59 MHz 1.0 Gb/s – 1.185 Gb/s
÷28 1.4GHz–1.6GHz *) 50 MHz–57 MHz 1.0 Gb/s – 1.142 Gb/s
÷29 1.45GHz–1.6GHz *) 50 MHz–55 MHz 1.0 Gb/s – 1.103 Gb/s
÷30 1.5GHz–1.6GHz *) 50 MHz–53 MHz 1.0 Gb/s – 1.066 Gb/s
÷31 1.55GHz–1.6GHz *) 50 MHz–51 MHz 1.0 Gb/s – 1.032 Gb/s

continues on next page

2.5. Event Generator 305

https://en.wikipedia.org/wiki/Emitter-coupled_logic#PECL

EPICS Documentation Sandbox

Table 1 – continued from previous page
Divider RF Input Frequency Event Clock Bit Rate
÷32 1.6 GHz *) 50 MHz 1.0 Gb/s

RF Input Requirements

*) Range limited by AD9515 maximum input frequency of 1.6 GHz

Fractional Synthesiser (EVM, distribution layer)

The event master requires a reference clock to be able to synchronise on the incoming event stream sent by the system
master. A Microchip (formerly Micrel) SY87739L Protocol Transparent Fractional-N Synthesiser with a reference
clock of 24 MHz is used.

The following table lists programming bit patterns for a few frequencies. Please note that before programming a new
operating frequency in the fractional synthesizer the operating frequency (in MHz) has to be set in the UsecDivider
register. This is essential as the board’s PLL cannot lock if it does not know the frequency range to lock to.

Event Rate Configuration Bit Pattern Reference Output Precision (theoretical)
142.8 MHz 0x0891C100 142.857 MHz 0
499.8 MHz/4 = 124.95 MHz 0x00FE816D 124.95 MHz 0
499.654 MHz/4 = 124.9135 MHz 0x0C928166 124.907 MHz -52 ppm
476 MHz/4 = 119 MHz 0x018741AD 119 MHz 0
106.25 MHz (fibre channel) 0x049E81AD 106.25 MHz 0
499.8 MHz/5 = 99.96 MHz 0x025B41ED 99.956 MHz -40 ppm
50 MHz 0x009743AD 50.0 MHz 0
499.8 MHz/10 = 49.98 MHz 0x025B43AD 49.978 MHz -40 ppm
499.654MHz/4=124.9135MHz 0x0C928166 124.907MHz -52 ppm
50 MHz 0x009743AD 50.0 MHz 0

2.6 Delay Compensation

With the active delay compensation feature the Event Generator and distribution layer have been integrated into a single
product, the Event Master (EVM).

306 Chapter 2. MRF Timing System Reference

https://www.analog.com/en/products/ad9515.html
https://www.microchip.com/
http://ww1.microchip.com/downloads/en/devicedoc/sy87739l.pdf

EPICS Documentation Sandbox

Figure 1: Timing System Topology (Active Delay Compensation, series 300)

2.6.1 Topology ID

Each device in the timing system is given an unique identifier, the Topology ID. The master EVM is given ID
0x00000000. The downstream devices are given IDs with the least significant four bits representing the port num-
ber the device is connected to. Each EVM left shifts its own ID by four bits and assigns the downstream port number
to the lowest four bits to form the topology ID for the downstream devices in the next level. The topology IDs are
represented above the devices in the example layout in figure 1.

2.6.2 Active Delay Compensation

Delay compensation is achieved in measuring the propagation delay of events from the delay compensation master
EVM through the distribution network up to the Event Receivers. At the last stage the EVR is aware of the delay
through the network and adjusts an internal FIFO depth to match a programmed target delay value.

Timing System Master

The top node in the Timing System has the important task to generate periodic beacon events, to initialise and send out
delay compensation data using the segmented data buffer. Only the top node can be the master and only one master is
allowed in the system, all other EVMs have to be initialised in fan-out mode.

2.6. Delay Compensation 307

EPICS Documentation Sandbox

Figure 2: Timing System Master

The beacon generator sends out the beacon event (code 0x7e) at a rate of event clock/215. When the next node receives
the beacon it sends it immediately back to the master which measures the propagation delay of the beacon event. The
delay measurement precision improves with time and takes up to 15 minutes to stabilise. The delay value (half of the
loop delay) and delay status for each SFP port is sent out using the segmented data buffer. In case the link returning
the beacon (receiving side of port 1 through 8) is lost the measurement value is reset and the path delay value status is
invalidated. Also if the delay value between consecutive measurements varies significantly (by more than +/- 4 event
clock cycles) the delay measurement and delay value status is reset.

Timing System Fan-Out

In EVMs configured as fan-outs (DCMST = 0 and BCGEN = 0) beacons from the Timing System Master are received
by the port U transceiver. The recovered event clock from the transceiver is filtered by a clock cleaner external to the
FPGA. A FIFO separates the cleaned event clock domain from the recovered clock domain. The depth of the FIFO is
kept constant by adjusting the phase of the cleaned clock. Beacon events are propagated through the fan-out and the
propagation delay from port U to the fan-out ports 1 through 8 is measured. This delay value can be read from the
IntDCValue register. Further on the beacon events get sent out on the fan-out ports and returned by the next level of
fan-outs or event receivers. The loop delay for each port gets measured and the individual port delay values (half of the
loop delay value) can be read from the registers Port1DCValue through Port8DCValue. Similar to the timing system
master if the link returning the beacon (receiving side of port 1 through 8) is lost the measurement value is reset and
the path delay value status is invalidated.

308 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Figure: Timing System Fan-Out

The fan-out receives the delay compensation segment on the segmented data buffer. This segment contains information
about the delay value from the Timing System Master up to this fan-out and the delay value quality. The intergrated
delay value from the Timing System Master up to the fan-out can be retrieved from the UpDCValue register. The fan-
out modifies the delay value and delay status fields in the DC segment for each port and sends out the new DC segments
through ports 1 through 8.

2.7 EVG Function Register Map

The EVM module can be configured for use as an Event Generator (EVG) or a fanout/concentrator.

This is the register map when EVM is configured as an EVG.

Address Register Type Description
0x000 Status UINT32 Status Register
0x004 Control UINT32 Control Register
0x008 IrqFlag UINT32 Interrupt Flag Register
0x00C IrqEnable UINT32 Interrupt Enable Register
0x010 ACControl UINT32 AC divider control
0x014 ACMap UINT32 AC trigger event mapping
0x018 SWEvent UINT32 Software event Register
0x01C SegBufControl UINT32 Segmented Data Buffer Control Register
0x020 DataBufControl UINT32 Data Buffer Control Register
0x024 DBusMap UINT32 Distributed Bus Mapping Register
0x028 DBusEvents UINT32 Distributed Bus Timestamping Events Register
0x02C FWVersion UINT32 Firmware Version Register
0x034 TSControl UINT32 Timestamp event generator control Register
0x038 TSValue UINT32 Timestamp event generator value Register
0x040 FPInput UINT32 Front Panel Input state Register
0x044 UnivInput UINT32 Universal Input state Register
0x048 TBInput UINT32 Transition Board Input state Register
0x04C UsecDivider UINT32 Divider to get from Event Clock to 1 MHz
0x050 ClockControl UINT32 Event Clock Control Register

continues on next page

2.7. EVG Function Register Map 309

EPICS Documentation Sandbox

Table 2 – continued from previous page
Address Register Type Description
0x060 EvanControl UINT32 Event Analyser Control Register
0x064 EvanCode UINT32 Event Analyser Distributed Bus and Event Code Register
0x068 EvanTimeHigh UINT32 Event Analyser Time Counter (bits 63 – 32)
0x06C EvanTimeLow UINT32 Event Analyser Time Counter (bits 31 – 0)
0x070 SeqRamCtrl0 UINT32 Sequence RAM 0 Control Register
0x074 SeqRamCtrl1 UINT32 Sequence RAM 1 Control Register
0x080 FracDiv UINT32 Micrel SY87739L Fractional Divider Configuration Word
0x0A0 SPIData UINT32 SPI Data Register
0x0A4 SPIControl UINT32 SPI Control Register
0x100 EvTrig0 UINT32 Event Trigger 0 Register
0x104 EvTrig1 UINT32 Event Trigger 1 Register
0x108 EvTrig2 UINT32 Event Trigger 2 Register
0x10C EvTrig3 UINT32 Event Trigger 3 Register
0x110 EvTrig4 UINT32 Event Trigger 4 Register
0x114 EvTrig5 UINT32 Event Trigger 5 Register
0x118 EvTrig6 UINT32 Event Trigger 6 Register
0x11C EvTrig7 UINT32 Event Trigger 7 Register
0x180 MXCCtrl0 UINT32 Multiplexed Counter 0 Control Register
0x184 MXCPresc0 UINT32 Multiplexed Counter 0 Prescaler Register
0x188 MXCCtrl1 UINT32 Multiplexed Counter 1 Control Register
0x18C MXCPresc1 UINT32 Multiplexed Counter 1 Prescaler Register
0x190 MXCCtrl2 UINT32 Multiplexed Counter 2 Control Register
0x194 MXCPresc2 UINT32 Multiplexed Counter 2 Prescaler Register
0x198 MXCCtrl3 UINT32 Multiplexed Counter 3 Control Register
0x19C MXCPresc3 UINT32 Multiplexed Counter 3 Prescaler Register
0x1A0 MXCCtrl4 UINT32 Multiplexed Counter 4 Control Register
0x1A4 MXCPresc4 UINT32 Multiplexed Counter 4 Prescaler Register
0x1A8 MXCCtrl5 UINT32 Multiplexed Counter 5 Control Register
0x1AC MXCPresc5 UINT32 Multiplexed Counter 5 Prescaler Register
0x1B0 MXCCtrl6 UINT32 Multiplexed Counter 6 Control Register
0x1B4 MXCPresc6 UINT32 Multiplexed Counter 6 Prescaler Register
0x1B8 MXCCtrl7 UINT32 Multiplexed Counter 7 Control Register
0x1BC MXCPresc7 UINT32 Multiplexed Counter 7 Prescaler Register
0x400 FPOutMap0 UINT16 Front Panel Output 0 Mapping Register
0x402 FPOutMap1 UINT16 Front Panel Output 1 Mapping Register
0x404 FPOutMap2 UINT16 Front Panel Output 2 Mapping Register
0x406 FPOutMap3 UINT16 Front Panel Output 3 Mapping Register
0x440 UnivOutMap0 UINT16 Universal Output 0 Mapping Register
0x442 UnivOutMap1 UINT16 Universal Output 1 Mapping Register
0x444 UnivOutMap2 UINT16 Universal Output 2 Mapping Register
0x446 UnivOutMap3 UINT16 Universal Output 3 Mapping Register
0x448 UnivOutMap4 UINT16 Universal Output 4 Mapping Register
0x44A UnivOutMap5 UINT16 Universal Output 5 Mapping Register
0x44C UnivOutMap6 UINT16 Universal Output 6 Mapping Register
0x44E UnivOutMap7 UINT16 Universal Output 7 Mapping Register
0x450 UnivOutMap8 UINT16 Universal Output 8 Mapping Register
0x452 UnivOutMap9 UINT16 Universal Output 9 Mapping Register
0x480 TBOutMap0 UINT16 Transition Board Output 0 Mapping Register
0x482 TBOutMap1 UINT16 Transition Board Output 1 Mapping Register

continues on next page

310 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Table 2 – continued from previous page
Address Register Type Description
0x484 TBOutMap2 UINT16 Transition Board Output 2 Mapping Register
0x486 TBOutMap3 UINT16 Transition Board Output 3 Mapping Register
0x488 TBOutMap4 UINT16 Transition Board Output 4 Mapping Register
0x48A TBOutMap5 UINT16 Transition Board Output 5 Mapping Register
0x48C TBOutMap6 UINT16 Transition Board Output 6 Mapping Register
0x48E TBOutMap7 UINT16 Transition Board Output 7 Mapping Register
0x490 TBOutMap8 UINT16 Transition Board Output 8 Mapping Register
0x492 TBOutMap9 UINT16 Transition Board Output 9 Mapping Register
0x494 TBOutMap10 UINT16 Transition Board Output 10 Mapping Register
0x496 TBOutMap11 UINT16 Transition Board Output 11 Mapping Register
0x498 TBOutMap12 UINT16 Transition Board Output 12 Mapping Register
0x49A TBOutMap13 UINT16 Transition Board Output 13 Mapping Register
0x49C TBOutMap14 UINT16 Transition Board Output 14 Mapping Register
0x49E TBOutMap15 UINT16 Transition Board Output 15 Mapping Register
0x500 FPInMap0 UINT32 Front Panel Input 0 Mapping Register
0x504 FPInMap1 UINT32 Front Panel Input 1 Mapping Register
0x508 FPInMap2 UINT32 Front Panel Input 2 Mapping Register
0x520 FPPhMon0 UINT32 Front Panel Input 0 Phase Monitoring Register
0x524 FPPhMon1 UINT32 Front Panel Input 1 Phase Monitoring Register
0x528 FPPhMon2 UINT32 Front Panel Input 2 Phase Monitoring Register
0x540 UnivInMap0 UINT32 Front Panel Universal Input 0 Map Register
0x544 UnivInMap1 UINT32 Front Panel Universal Input 1 Map Register
0x548 UnivInMap2 UINT32 Front Panel Universal Input 2 Map Register
0x54C UnivInMap3 UINT32 Front Panel Universal Input 3 Map Register
0x550 UnivInMap4 UINT32 Front Panel Universal Input 4 Map Register
0x554 UnivInMap5 UINT32 Front Panel Universal Input 5 Map Register
0x558 UnivInMap6 UINT32 Front Panel Universal Input 6 Map Register
0x55C UnivInMap7 UINT32 Front Panel Universal Input 7 Map Register
0x560 UnivInMap8 UINT32 Front Panel Universal Input 8 Map Register
0x564 UnivInMap9 UINT32 Front Panel Universal Input 9 Map Register
0x600 TBInMap0 UINT32 Transition Board Input 0 Mapping Register
0x604 TBInMap1 UINT32 Transition Board Input 1 Mapping Register
0x608 TBInMap2 UINT32 Transition Board Input 2 Mapping Register
0x60C TBInMap3 UINT32 Transition Board Input 3 Mapping Register
0x610 TBInMap4 UINT32 Transition Board Input 4 Mapping Register
0x614 TBInMap5 UINT32 Transition Board Input 5 Mapping Register
0x618 TBInMap6 UINT32 Transition Board Input 6 Mapping Register
0x61C TBInMap7 UINT32 Transition Board Input 7 Mapping Register
0x620 TBInMap8 UINT32 Transition Board Input 8 Mapping Register
0x624 TBInMap9 UINT32 Transition Board Input 9 Mapping Register
0x628 TBInMap10 UINT32 Transition Board Input 10 Mapping Register
0x62C TBInMap11 UINT32 Transition Board Input 11 Mapping Register
0x630 TBInMap12 UINT32 Transition Board Input 12 Mapping Register
0x634 TBInMap13 UINT32 Transition Board Input 13 Mapping Register
0x638 TBInMap14 UINT32 Transition Board Input 14 Mapping Register
0x63C TBInMap15 UINT32 Transition Board Input 15 Mapping Register
0x800 – 0xFFF DataBuf Data Buffer Transmit Memory
0x1000 – 0x10FF configROM
0x1100 – 0x11FF scratchRAM

continues on next page

2.7. EVG Function Register Map 311

EPICS Documentation Sandbox

Table 2 – continued from previous page
Address Register Type Description
0x1200 – 0x12FF SFPEEPROM Upstream SFP Transceiver EEPROM contents (SFP address 0xA0)
0x1300 – 0x13FF SFPDIAG Upstream SFP Transceiver diagnostics (SFP address 0xA2)
0x2000 – 0x27FF SegBuf Segmented Data Buffer Transmit Memory
0x8000 – 0xBFFF SeqRam0 Sequence RAM 0
0xC000 – 0xFFFF SeqRam1 Sequence RAM 1

2.7.1 Register descriptions

Status Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x000 RDB7 RDB6 RDB5 RDB4 RDB3 RDB2 RDB1 RDB0

bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x001 TDB7 TDB6 TDB5 TDB4 TDB3 TDB2 TDB1 TDB0

Bit Function
RDB7 Status of received distributed bus bit 7 (from upstream EVG)
RDB6 Status of received distributed bus bit 6 (from upstream EVG)
RDB5 Status of received distributed bus bit 5 (from upstream EVG)
RDB4 Status of received distributed bus bit 4 (from upstream EVG)
RDB3 Status of received distributed bus bit 3 (from upstream EVG)
RDB2 Status of received distributed bus bit 2 (from upstream EVG)
RDB1 Status of received distributed bus bit 1 (from upstream EVG)
RDB0 Status of received distributed bus bit 0 (from upstream EVG)
TDB7 Status of transmitted distributed bus bit 7
TDB6 Status of transmitted distributed bus bit 6
TDB5 Status of transmitted distributed bus bit 5
TDB4 Status of transmitted distributed bus bit 4
TDB3 Status of transmitted distributed bus bit 3
TDB2 Status of transmitted distributed bus bit 2
TDB1 Status of transmitted distributed bus bit 1
TDB0 Status of transmitted distributed bus bit 0

Control Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x004 EVGEN RXDIS RXPWD FIFORS SRST LEMDE MXCRES

bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x005 BCGEN DCMST SRALT

312 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Bit Function
EVGEN Event Generator Master enable
RXDIS Disable event reception
RXPWD Receiver Power down
FIFORS Reset RX Event Fifo
SRST Soft reset IP
LEMDE Little endian mode (cPCI-EVG-300)

0 – PCI core in big endian mode (power up default)

1 – PCI core in little endian mode

MXCRES Write 1 to reset multiplexed counters
BCGEN Delay Compensation Beacon generator enable

0 – Beacon generator disabled

1 – Beacon generator enabled, sends out 0x7E events and delay compensation

data. Set only for master EVG in system

DCMST System Master enable
0 – System Master disabled

1 – System Master enabled – has to be set and only for master EVG in system

SRALT (reserved)

Interrupt Flag Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x008

bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x009 IFSOV1 IFSOV0 IFSHF1 IFSHF0

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x00A IFSSTO1 IFSSTO0 IFSSTA1 IFSSTA0

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x00B IFEXT IFDBUF IFFF IFVIO

2.7. EVG Function Register Map 313

EPICS Documentation Sandbox

Bit Function
IFSOV1 Sequence RAM 1 sequence roll over interrupt flag
IFSOV0 Sequence RAM 0 sequence roll over interrupt flag
IFSHF1 Sequence RAM 1 sequence halfway through interrupt flag
IFSHF0 Sequence RAM 0 sequence halfway through interrupt flag
IFSSTO1 Sequence RAM 1 sequence stop interrupt flag
IFSSTO0 Sequence RAM 0 sequence stop interrupt flag
IFSSTA1 Sequence RAM 1 sequence start interrupt flag
IFSSTA0 Sequence RAM 0 sequence start interrupt flag
IFEXT External Interrupt flag
IFDBUF Data buffer flag
IFFF RX Event FIFO full flag
IFVIO Port U Receiver violation flag

Interrupt Enable Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x00C IRQEN PCIIE

bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x00D IESOV1 IESOV0 IESHF1 IESHF0

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x00E IESSTO1 IESSTO0 IESSTA1 IESSTA0

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x00F IEEXT IEDBUF IEFF IEVIO

314 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Bit Function
IRQEN Master interrupt enable
PCIIE PCI core interrupt enable (cPCI-EVG-300)

This bit is used by the low level driver to disable further interrupts before the

first interrupt has been handled in user space

IESOV1 Sequence RAM 1 sequence roll over interrupt enable
IESOV0 Sequence RAM 0 sequence roll over interrupt enable
IESHF1 Sequence RAM 1 sequence halfway through interrupt enable
IESHF0 Sequence RAM 0 sequence halfway through interrupt enable
IESSTO1 Sequence RAM 1 sequence stop interrupt enable
IESSTO0 Sequence RAM 0 sequence stop interrupt enable
IESSTA1 Sequence RAM 1 sequence start interrupt enable
IESSTA0 Sequence RAM 0 sequence start interrupt enable
IEEXT External interrupt enable
IEDBUF Data buffer interrupt enable
IEFF Event FIFO full interrupt enable
IEVIO Receiver violation interrupt enable

AC Trigger Control Register

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x011 ACSYN2 ACSYN1 ACBYP ACSYN0

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x012 ACDIV7 ACDIV6 ACDIV5 ACDIV4 ACDIV3 ACDIV2 ACDIV1 ACDIV0
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x013 ACPS7 ACPS6 ACPS5 ACPS4 ACPS3 ACPS2 ACPS1 ACPS0

Bit Function
ACBYP AC divider and phase shifter bypass (0 = divider/phase shifter enabled, 1 =

divider/phase shifter bypassed)

ACSYN(2:0) Synchronization select
000 = Event clock

001 = Multiplexed counter 7 output

011 = Front panel TTL input IN1

101 = Front panel TTL input IN2

ACDIV(7:0) AC Trigger divider (8-bit value)
ACPS(7:0) AC Trigger Phase shift (8-bit value)

2.7. EVG Function Register Map 315

EPICS Documentation Sandbox

AC Trigger Mapping Register

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x017 ACM7 ACM6 ACM5 ACM4 ACM3 ACM2 ACM1 ACM0

Bit Function
ACM7 If set AC circuit triggers Event Trigger 7
ACM6 If set AC circuit triggers Event Trigger 6
ACM5 If set AC circuit triggers Event Trigger 5
ACM4 If set AC circuit triggers Event Trigger 4
ACM3 If set AC circuit triggers Event Trigger 3
ACM2 If set AC circuit triggers Event Trigger 2
ACM1 If set AC circuit triggers Event Trigger 1
ACM0 If set AC circuit triggers Event Trigger 0

Software Event Register

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x01A SWPEND SWENA

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x01B CODE7 CODE6 CODE5 CODE4 CODE3 CODE2 CODE1 CODE0

Bit Function
SWPEND Event code waiting to be sent out (read-only). A new event code may be written

to the event code register when this bit reads ‘0’.

SWENA Enable software event
When enabled ‘1’ a new event will be sent out when event code is written to

the event code register.

CODE(7:0) Event Code (8-bit value)

316 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Segmented Data Buffer Control Register

ad-
dress

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x01C SADDR(7) SADDR(6) SADDR(5) SADDR(4) SADDR(3) SADDR(2) SADDR(1) SADDR(0)
bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x01D TXCPT TXRUN TRIG ENA 1

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x01E DTSZ(10) DTSZ(9) DTSZ(8)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x01F DTSZ(7) DTSZ(6) DTSZ(5) DTSZ(4) DTSZ(3) DTSZ(2) 0 0

Bit Function
SADDR Transfer Start Segment Address (16 byte segments)
TXCPT Data Buffer Transmission Complete
TXRUN Data Buffer Transmission Running – set when data transmission has been

triggered and has not been completed yet

TRIG Data Buffer Trigger Transmission
Write ‘1’ to start transmission of data in buffer

ENA Data Buffer Transmission enable
‘0’ – data transmission engine disabled

‘1’ – data transmission engine enabled

DTSZ(10:8) Data Transfer size 4 bytes to 2k in four byte increments

Data Buffer Control Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x020

bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x021 TXCPT TXRUN TRIG ENA 1

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x022 DTSZ(10) DTSZ(9) DTSZ(8)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x023 DTSZ(7) DTSZ(6) DTSZ(5) DTSZ(4) DTSZ(3) DTSZ(2) 0 0

2.7. EVG Function Register Map 317

EPICS Documentation Sandbox

Bit Function
TXCPT Data Buffer Transmission Complete
TXRUN Data Buffer Transmission Running – set when data transmission has been

triggered and has not been completed yet

TRIG Data Buffer Trigger Transmission
Write ‘1’ to start transmission of data in buffer

ENA Data Buffer Transmission enable
‘0’ – data transmission engine disabled

‘1’ – data transmission engine enabled

DTSZ Data Transfer size 4 bytes to 2k in four byte increments

Distributed Bus Mapping Register

ad-
dress

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x024 DBMAP7(3)DBMAP7(2)DBMAP7(1)DBMAP7(0)DBMAP6(3)DBMAP6(2)DBMAP6(1)DBMAP6(0)
bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x025 DBMAP5(3)DBMAP5(2)DBMAP5(1)DBMAP5(0)DBMAP4(3)DBMAP4(2)DBMAP4(1)DBMAP4(0)
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x026 DBMAP3(3)DBMAP3(2)DBMAP3(1)DBMAP3(0)DBMAP2(3)DBMAP2(2)DBMAP2(1)DBMAP2(0)
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x027 DBMAP1(3)DBMAP1(2)DBMAP1(1)DBMAP1(0)DBMAP0(3)DBMAP0(2)DBMAP0(1)DBMAP0(0)

Bit Function
DBMAP7(3:0) Distributed Bus Bit 7 Mapping:

0 – Off, output logic ‘0’

1 – take bus bit from external input

2 – Multiplexed counter output mapped to distributed bus bit

3 – Distributed bus bit forwarded from upstream EVG

DBMAP6(3:0) Distributed Bus Bit 7 Mapping (see above for mappings)
DBMAP5(3:0) Distributed Bus Bit 7 Mapping (see above for mappings)
DBMAP4(3:0) Distributed Bus Bit 7 Mapping (see above for mappings)
DBMAP3(3:0) Distributed Bus Bit 7 Mapping (see above for mappings)
DBMAP2(3:0) Distributed Bus Bit 7 Mapping (see above for mappings)
DBMAP1(3:0) Distributed Bus Bit 7 Mapping (see above for mappings)
DBMAP0(3:0) Distributed Bus Bit 7 Mapping (see above for mappings)

318 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Distributed Bus Event Enable Register

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x02B DBEV7 DBEV6 DBEV5

Bit Function
DBEV5 Distributed bus input 5 “Timestamp reset” 0x7D event enable
DBEV6 Distributed bus input 6 “Seconds ‘0’” 0x70 event enable
DBEV7 Distributed bus input 7 “Seconds ‘1’” 0x71 event enable

FPGA Firmware Version Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x02C 0 0 1 0 FF3 FF2 FF1 FF0

bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x02D Subrelease ID

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x02E Firmware ID

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x02F Revision ID

Bit Function
Form Factor FF(0:3)

0 – CompactPCI 3U

1 – PMC

2 – VME64x

3 – CompactRIO

4 – CompactPCI 6U

6 – PXIe

7 – PCIe

8 – mTCA.4

2.7. EVG Function Register Map 319

EPICS Documentation Sandbox

Bit Function
Subrelease ID For production releases the subrelease ID counts up from 00.

For pre-releases this ID is used “backwards” counting down from ff i.e. when

approacing release 22000207, we have prereleases 22FF0206, 22FE0206,

22FD0206 etc. in this order.

Firmware ID 00 – Modular Register Map firmware (no delay compensation)
01 – Reserved

02 – Delay Compensation firmware

Revision ID See end of manual

Timestamp Generator Control Register

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x037 TSGENA TSGLOAD

Bit Function
TSGENA Timestamp Generator Enable (‘0’ = disable, ‘1’ = enable)
TSGLOAD Timestamp Generator Load new value into Timestamp Counter

Write ‘1’ to load new value

Microsecond Divider Register

address bit 15 .. bit 0
0x04E Rounded integer value of 1s * event clock

This register shall be written with an integer value of the event clock rate in MHz. For 100 MHz event clock this register
should read 100, for 50 MHz event clock this register should read 50. This value is used to set the parameters for the
clock cleaner PLL and e.g. for the phase shifter in the AC input logic.

320 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Clock Control Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x050 PLLLOCK BWSEL2 BWSEL1 BWSEL0 RFSEL2 RFSEL1 RFSEL0

bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x051 PHTOGG RFDIV5 RFDIV4 RFDIV3 RFDIV2 RFDIV1 RFDIV0

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x052 CGLOCK

Bit Function
PLLLOCK Clock cleaner locked
BWSEL2:0 PLL Bandwidth Select (see Silicon Labs Si5317 datasheet)

000 – Si5317, BW setting HM (lowest loop bandwidth)
001 – Si5317, BW setting HL
010 – Si5317, BW setting MH
011 – Si5317, BW setting MM
100 – Si5317, BW setting ML (highest loop bandwidth)

PHTOGG Distributed bus phase toggle
RFDIV5-0 External RF divider select:

000000 – RF/1
000001 – RF/2
000010 – RF/3
000011 – RF/4
000100 – RF/5
000101 – RF/6
000110 – RF/7
000111 – RF/8
001000 – RF/9
001001 – RF/10
001010 – RF/11
001011 – RF/12
001100 – OFF
001101 – RF/14
001110 – RF/15
001111 – RF/16
010000 – RF/17
010001 – RF/18
010010 – RF/19
010011 – RF/20
010100 – RF/21
010101 – RF/22
010110 – RF/23
010111 – RF/24
011000 – RF/25
011001 – RF/26

continues on next page

2.7. EVG Function Register Map 321

EPICS Documentation Sandbox

Table 3 – continued from previous page
Bit Function

011010 – RF/27
011011 – RF/28
011100 – RF/29
011101 – RF/30
011110 – RF/31
011111 – RF/32

RFSEL2-0 RF reference select:
000 – Use internal reference (fractional synthesizer)
001 – Use external RF reference (front panel input through divider)
010 – PXIe 100 MHz clock
100 – Use recovered RX clock, Fan-Out mode
101 – Use external RF reference for downstream ports, internal reference for
upstream port, Fan-Out mode, event rate down conversion
110 – PXIe 10 MHz clock through clock multiplier
111 – Recovered clock /2 decimate mode, event rate is halved

CGLOCK Micrel SY87739L reference clock locked (read-only)

Note: Please note that after changing the Event clock source the fractional synthesizer control word must be reloaded
to initialize an internal reset.

Event Analyser Control Register

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x063 EVANE EVARS EVAOF EVAEN EVACR

322 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Bit Function
EVANE Event Analyser FIFO not empty flag:

0 – FIFO empty

1 – FIFO not empty, events in FIFO

EVARS Event Analyser Reset
0 – not in reset

1 – reset

EVAOF Event Analyser FIFO overflow flag:
0 – no overflow

1 – FIFO overflow

EVAEN Event Analyser enable
0 – Event Analyser disabled

1 – Event Analyser enabled

EVACR Event Analyser 64 bit counter reset
0 – Counter running

1 – Counter reset to zero.

Sequence RAM Control Registers

ad-
dress

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x070 SQ0RUN SQ0ENA

bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x071 SQ0XTR SQ0XEN SQ0SWT SQ0SNG SQ0REC SQ0RES SQ0DIS SQ0EN
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x072 SQSWMASK3SQSWMASK2SQSWMASK1SQSWMASK0SQSWENA3SQSWENA2SQSWENA1SQSWENA0
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x073 SQ0TSEL7 SQ0TSEL6 SQ0TSEL5 SQ0TSEL4 SQ0TSEL3 SQ0TSEL2 SQ0TSEL1 SQ0TSEL0

2.7. EVG Function Register Map 323

EPICS Documentation Sandbox

ad-
dress

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x074 SQ1RUN SQ1ENA

bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x075 SQ1XTR SQ1XEN SQ1SWT SQ1SNG SQ1REC SQ1RES SQ1DIS SQ1EN
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x076 SQSWMASK3SQSWMASK2SQSWMASK1SQSWMASK0SQSWENA3SQSWENA2SQSWENA1SQSWENA0
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x077 SQ1TSEL7 SQ1TSEL6 SQ1TSEL5 SQ1TSEL4 SQ1TSEL3 SQ1TSEL2 SQ1TSEL1 SQ1TSEL0

324 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Bit Function
SQxRUN Sequence RAM running flag (read-only)
SQxENA Sequence RAM enabled flag (read_only)
SQxSWT Sequence RAM software trigger, write ‘1’ to trigger
SQxSNG Sequence RAM single mode
SQxREC Sequence RAM recycle mode
SQxRES Sequence RAM reset, write ‘1’ to reset
SQxDIS Sequence RAM disable, write ‘1’ to disable
SQxEN Sequence RAM enable, write ‘1’ to enable/arm
SQxXEN Sequence RAM allow external enable, ‘1’ - allow
SQxXTR Sequence RAM allow external trigger enable, ‘1’ - allow
SQSWMASK Sequence RAM SW mask register, the mask bits are common for all RAMS
SQSWENA Sequence RAM SW enable register, the mask bits are common for all RAMS
SQxTSEL Sequence RAM trigger select:

0 – trigger from MXC0

1 – trigger from MXC1

2 – trigger from MXC2

3 – trigger from MXC3

4 – trigger from MXC4

5 – trigger from MXC5

6 – trigger from MXC6

7 – trigger from MXC7

16 – trigger from AC synchronization logic

17 – trigger from sequence RAM 0 software trigger

18 – trigger from sequence RAM 1 software trigger

19 – trigger always immediately when enabled

24 – trigger from sequence RAM 0 external trigger

25 – trigger from sequence RAM 1 external trigger

31 – trigger disabled (default after power up)

2.7. EVG Function Register Map 325

EPICS Documentation Sandbox

SY87739L Fractional Divider Configuration Word

Configuration Word Frequency with 24 MHz reference oscillator
0x0891C100 142.857 MHz
0x00DE816D 125 MHz
0x00FE816D 124.95 MHz
0x0C928166 124.9087 MHz
0x018741AD 119 MHz
0x072F01AD 114.24 MHz
0x049E81AD 106.25 MHz
0x008201AD 100 MHz
0x025B41ED 99.956 MHz
0x0187422D 89.25 MHz
0x0082822D 81 MHz
0x0106822D 80 MHz
0x019E822D 78.900 MHz
0x018742AD 71.4 MHz
0x0C9282A6 62.454 MHz
0x009743AD 50 MHz
0x0C25B43AD 49.978 MHz
0x0176C36D 49.965 MHz

SPI Configuration Flash Registers

ad-
dress

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x0A3 SPI-
DATA7

SPI-
DATA6

SPI-
DATA5

SPI-
DATA4

SPI-
DATA3

SPI-
DATA2

SPI-
DATA1

SPI-
DATA0

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x0A7 E RRDY TRDY TMT TOE ROE OE SSO

Bit Function
SPIDATA(7:0) Read SPI data byte / Write SPI data byte
E Overrun Error flag
RRDY Receiver ready, if ‘1’ data byte waiting in SPI_DATA
TRDY Transmitter ready, if ‘1’ SPI_DATA is ready to accept new transmit data byte
TMT Transmitter empty, if ‘1’ data byte has been transmitted
TOE Transmitter overrun error
ROE Receiver overrun error
OE Output enable for SPI pins, ‘1’ enable SPI pins
SSO Slave select output enable for SPI slave device, ‘1’ device selected

326 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Event Trigger Registers

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x102 EVEN0

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x103 EVCD0(7) EVCD0(6) EVCD0(5) EVCD0(4) EVCD0(3) EVCD0(2) EVCD0(1) EVCD0(0)

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x106 EVEN1

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x107 EVCD1(7) EVCD1(6) EVCD1(5) EVCD1(4) EVCD1(3) EVCD1(2) EVCD1(1) EVCD1(0)

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x10A EVEN2

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x10B EVCD2(7) EVCD2(6) EVCD2(5) EVCD2(4) EVCD2(3) EVCD2(2) EVCD2(1) EVCD2(0)

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x10E EVEN3

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x10F EVCD3(7) EVCD3(6) EVCD3(5) EVCD3(4) EVCD3(3) EVCD3(2) EVCD3(1) EVCD3(0)

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x112 EVEN4

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x113 EVCD4(7) EVCD4(6) EVCD4(5) EVCD4(4) EVCD4(3) EVCD4(2) EVCD4(1) EVCD4(0)

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x116 EVEN5

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x117 EVCD5(7) EVCD5(6) EVCD5(5) EVCD5(4) EVCD5(3) EVCD5(2) EVCD5(1) EVCD5(0)

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x11A EVEN6

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x11B EVCD6(7) EVCD6(6) EVCD6(5) EVCD6(4) EVCD6(3) EVCD6(2) EVCD6(1) EVCD6(0)

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x11E EVEN7

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x11F EVCD7(7) EVCD7(6) EVCD7(5) EVCD7(4) EVCD7(3) EVCD7(2) EVCD7(1) EVCD7(0)

Bit Function
EVENx Enable Event Trigger x
EVCDx Event Trigger Code for Event trigger x

Multiplexed Counter Registers

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x180 MXC0 MXCP0

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x183 MX0EV7 MX0EV6 MX0EV5 MX0EV4 MX0EV3 MX0EV2 MX0EV1 MX0EV0

bit 31 bit 0
0x184 Multiplexed Counter 0 Prescaler

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
continues on next page

2.7. EVG Function Register Map 327

EPICS Documentation Sandbox

Table 5 – continued from previous page
address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x188 MXC1 MXCP1

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x18B MX1EV7 MX1EV6 MX1EV5 MX1EV4 MX1EV3 MX1EV2 MX1EV1 MX1EV0

bit 31 bit 0
0x18C Multiplexed Counter 1 Prescaler

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x190 MXC2 MXCP2

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x193 MX2EV7 MX2EV6 MX2EV5 MX2EV4 MX2EV3 MX2EV2 MX2EV1 MX2EV0

bit 31 bit 0
0x194 Multiplexed Counter 2 Prescaler

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x198 MXC3 MXCP3

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x19B MX3EV7 MX3EV6 MX3EV5 MX3EV4 MX3EV3 MX3EV2 MX3EV1 MX3EV0

bit 31 bit 0
0x19C Multiplexed Counter 3 Prescaler

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x1A0 MXC4 MXCP4

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x1A3 MX4EV7 MX4EV6 MX4EV5 MX4EV4 MX4EV3 MX4EV2 MX4EV1 MX4EV0

bit 31 bit 0
0x1A4 Multiplexed Counter 4 Prescaler

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x1A8 MXC5 MXCP5

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x1AB MX5EV7 MX5EV6 MX5EV5 MX5EV4 MX5EV3 MX5EV2 MX5EV1 MX5EV0

bit 31 bit 0
0x1AC Multiplexed Counter 5 Prescaler

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x1B0 MXC6 MXCP6

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x1B3 MX6EV7 MX6EV6 MX6EV5 MX6EV4 MX6EV3 MX6EV2 MX6EV1 MX6EV0

bit 31 bit 0
0x1B4 Multiplexed Counter 6 Prescaler

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x1B8 MXC7 MXCP7

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x1BB MX7EV7 MX7EV6 MX7EV5 MX7EV4 MX7EV3 MX7EV2 MX7EV1 MX7EV0

bit 31 bit 0
0x1BC Multiplexed Counter 7 Prescaler

328 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Bit Function
MXCx Multiplexed counter output status (read-only)
MXPx Multiplexed counter output polarity
MXxEV7 Map rising edge of multiplexed counter x to send out event trigger 7
MXxEV6 Map rising edge of multiplexed counter x to send out event trigger 6
MXxEV5 Map rising edge of multiplexed counter x to send out event trigger 5
MXxEV4 Map rising edge of multiplexed counter x to send out event trigger 4
MXxEV3 Map rising edge of multiplexed counter x to send out event trigger 3
MXxEV2 Map rising edge of multiplexed counter x to send out event trigger 2
MXxEV1 Map rising edge of multiplexed counter x to send out event trigger 1
MXxEV0 Map rising edge of multiplexed counter x to send out event trigger 0

Transition Board Output Mapping Registers

address bit 15 to bit 0
0x480 Transition Board Output 0 Mapping ID (see the table for mapping IDs)
0x482 Transition Board Output 1 Mapping ID
. . .

0x41E Transition Board Output 15 Mapping ID

2.7. EVG Function Register Map 329

EPICS Documentation Sandbox

Front Panel Input Mapping Registers

ad-
dress

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x500 FP0SQMK3FP0SQMK2FP0SQMK1FP0SQMK0FP0SQEEN3FP0SQEEN2FP0SQEEN1FP0SQEEN0/FP0IRQ
bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x501 FP0DB7 FP0DB6 FP0DB5 FP0DB4 FP0DB3 FP0DB2 FP0DB1 FP0DB0
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x502 FP0SEN1 FP0SEN0 FP0SEQ1 FP0SEQ0

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x503 FP0EV7 FP0EV6 FP0EV5 FP0EV4 FP0EV3 FP0EV2 FP0EV1 FP0EV0
bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x504 FP1SQMK3FP1SQMK2FP1SQMK1FP1SQMK0FP1SQEEN3FP1SQEEN2FP1SQEEN1FP1SQEEN0/FP1IRQ
bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x505 FP1DB7 FP1DB6 FP1DB5 FP1DB4 FP1DB3 FP1DB2 FP1DB1 FP1DB0
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x506 FP1SEN1 FP1SEN0 FP1SEQ1 FP1SEQ0

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x507 FP1EV7 FP1EV6 FP1EV5 FP1EV4 FP1EV3 FP1EV2 FP1EV1 FP1EV0
bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x508 FP2SQMK3FP2SQMK2FP2SQMK1FP2SQMK0FP2SQEEN3FP2SQEEN2FP2SQEEN1FP2SQEEN0/FP2IRQ
bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x509 FP2DB7 FP2DB6 FP2DB5 FP2DB4 FP2DB3 FP2DB2 FP2DB1 FP2DB0
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x50A FP2SEN1 FP2SEN0 FP2SEQ1 FP2SEQ0

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x50B FP2EV7 FP2EV6 FP2EV5 FP2EV4 FP2EV3 FP2EV2 FP2EV1 FP2EV0

330 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Bit Function
FPxSQMKy Map Front panel Input x to Sequence Event Mask bit y
FPxSQEENy Map Front panel Input x to Sequence Event Enable bit y
FPxIRQ Map Front panel Input x to External Interrupt
FPxDB7 Map Front panel Input x to Distributed Bus bit 7
FPxDB6 Map Front panel Input x to Distributed Bus bit 6
FPxDB5 Map Front panel Input x to Distributed Bus bit 5
FPxDB4 Map Front panel Input x to Distributed Bus bit 4
FPxDB3 Map Front panel Input x to Distributed Bus bit 3
FPxDB2 Map Front panel Input x to Distributed Bus bit 2
FPxDB1 Map Front panel Input x to Distributed Bus bit 1
FPxDB0 Map Front panel Input x to Distributed Bus bit 0
FPxSEN1 Map Front panel Input x to Sequence External Enable 1
FPxSEN0 Map Front panel Input x to Sequence External Enable 0
FPxSEQ1 Map Front panel Input x to Sequence Trigger 1
FPxSEQ0 Map Front panel Input x to Sequence Trigger 0
FPxEV7 Map Front panel Input x to Event Trigger 7
FPxEV6 Map Front panel Input x to Event Trigger 6
FPxEV5 Map Front panel Input x to Event Trigger 5
FPxEV4 Map Front panel Input x to Event Trigger 4
FPxEV3 Map Front panel Input x to Event Trigger 3
FPxEV2 Map Front panel Input x to Event Trigger 2
FPxEV1 Map Front panel Input x to Event Trigger 1
FPxEV0 Map Front panel Input x to Event Trigger 0

2.7.2 Front Panel Input Phase Monitoring Registers

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x520 PHCLR0 DBPH0 PHSEL0(1) PHSEL0(0)

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x522 PHFE0(3) PHFE0(2) PHFE0(1) PHFE0(0)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x523 PHRE0(3) PHRE0(2) PHRE0(1) PHRE0(0)

2.7. EVG Function Register Map 331

EPICS Documentation Sandbox

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x524 PHCLR1 DBPH1 PHSEL1(1) PHSEL1(0)

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x526 PHFE1(3) PHFE1(2) PHFE1(1) PHFE1(0)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x527 PHRE1(3) PHRE1(2) PHRE1(1) PHRE1(0)

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x528 PHCLR2 DBPH2 PHSEL2(1) PHSEL2(0)

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x52A PHFE2(3) PHFE2(2) PHFE2(1) PHFE2(0)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x52B PHRE2(3) PHRE2(2) PHRE2(1) PHRE2(0)

Bit Function
PHCLRx Reset phase monitoring registers by writing ‘1’
DBPHx Distributed bus phase sampled on rising edge of input signal
PHSELx(1:0) Input phase select

00 - Sample input with 0° event clock

01 - Sample input with 90° event clock

10 - Sample input with 180° event clock

11 - Sample input with 270° event clock

PHFEx(3:0) Falling edge phase monitoring register
PHREx(3:0) Rising edge phase monitoring register

332 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Transition Board Input Mapping Registers

ad-
dress

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x540 TI0SQMK(3)TI0SQMK(2)TI0SQMK(1)TI0SQMK(0)TI0SQEEN(3)TI0SQEEN(2)TI0SQEEN(1)TI0SQEEN(0) /
TI0IRQ

bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x541 TI0DB7 TI0DB6 TI0DB5 TI0DB4 TI0DB3 TI0DB2 TI0DB1 TI0DB0
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x542 TI0SEN1 TI0SEN0 TI0SEQ1 TI0SEQ0

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x543 TI0EV7 TI0EV6 TI0EV5 TI0EV4 TI0EV3 TI0EV2 TI0EV1 TI0EV0
bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x544 TI1SQMK(3)TI1SQMK(2)TI1SQMK(1)TI1SQMK(0)TI1SQEEN(3)TI1SQEEN(2)TI1SQEEN(1)TI1SQEEN(0) /
TI1IRQ

bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x545 TI1DB7 TI1DB6 TI1DB5 TI1DB4 TI1DB3 TI1DB2 TI1DB1 TI1DB0
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x546 TI1SEN1 TI1SEN0 TI1SEQ1 TI1SEQ0

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x547 TI1EV7 TI1EV6 TI1EV5 TI1EV4 TI1EV3 TI1EV2 TI1EV1 TI1EV0
. . .

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x55C TI5SQMK(3)TI5SQMK(2)TI5SQMK(1)TI5SQMK(0)TI5SQEEN(3)TI5SQEEN(2)TI5SQEEN(1)TI5SQEEN(0) /
TI5IRQ

bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x55D TI15DB7 TI15DB6 TI15DB5 TI15DB4 TI15DB3 TI15DB2 TI15DB1 TI15DB0
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x55E TI15SEN1 TI15SEN0 TI15SEQ1 TI15SEQ0

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit1 bit 0

0x55F TI15EV7 TI15EV6 TI15EV5 TI15EV4 TI15EV3 TI15EV2 TI15EV1 TI15EV0

2.7. EVG Function Register Map 333

EPICS Documentation Sandbox

Bit Function
TIxSQMKy Map Transition Board Input x to Sequence Event Mask bit y
TIxSQEENy Map Transition Board Input x to Sequence Event Enable bit y
TIxIRQ Map Transition Board Input x to External Interrupt
TIxDB7 Map Transition Board Input x to Distributed Bus bit 7
TIxDB6 Map Transition Board Input x to Distributed Bus bit 6
TIxDB5 Map Transition Board Input x to Distributed Bus bit 5
TIxDB4 Map Transition Board Input x to Distributed Bus bit 4
TIxDB3 Map Transition Board Input x to Distributed Bus bit 3
TIxDB2 Map Transition Board Input x to Distributed Bus bit 2
TIxDB1 Map Transition Board Input x to Distributed Bus bit 1
TIxDB0 Map Transition Board Input x to Distributed Bus bit 0
TIxSEN1 Map Transition Board Input x to Sequence External Enable 1
TIxSEN0 Map Transition Board Input x to Sequence External Enable 0
TIxSEQ1 Map Transition Board Input x to Sequence Trigger 1
TIxSEQ0 Map Transition Board Input x to Sequence Trigger 0
TIxEV7 Map Transition Board Input x to Event Trigger 7
TIxEV6 Map Transition Board Input x to Event Trigger 6
TIxEV5 Map Transition Board Input x to Event Trigger 5
TIxEV4 Map Transition Board Input x to Event Trigger 4
TIxEV3 Map Transition Board Input x to Event Trigger 3
TIxEV2 Map Transition Board Input x to Event Trigger 2
TIxEV1 Map Transition Board Input x to Event Trigger 1
TIxEV0 Map Transition Board Input x to Event Trigger 0

Note: All enabled input signals are OR’ed together. So if e.g. distributed bus bit 0 has two sources from universal
input 0 and 1, if either of the inputs is active high also the distributed bus is active high.

2.7.3 Embedded Event Receivers

The EVM-300 firmware includes two embedded event receivers. The downstream event receiver (EVRD) receives the
event stream from port U whereas the upstream event receiver (EVRU) receives the concentrated event stream from
ports 1 through 8.

The downstream event receiver (EVRD) is located in the EVG register map at offset 0x20000 through 0x2ffff and
the upstream event receiver (EVRU) is located in the EVG register map at offset 0x30000 through 0x3ffff. The event
receiver register map follows the description further in this document.

The event master has a number of internal signals which are connected following:

Signal destination Signal source
EVG UNIVIN(0) EVRD FPOUT(0)
EVG UNIVIN(1) EVRD FPOUT(1)
EVG UNIVIN(2) EVRD FPOUT(2)
EVG UNIVIN(3) EVRD FPOUT(3)
EVG UNIVIN(4) EVRD FPOUT(4)
EVG UNIVIN(5) EVRD FPOUT(5)
EVG UNIVIN(6) EVRD FPOUT(6)
EVG UNIVIN(7) EVRD FPOUT(7)

continues on next page

334 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Table 6 – continued from previous page
Signal destination Signal source
EVG UNIVIN(8) EVRU FPOUT(0)
EVG UNIVIN(9) EVRU FPOUT(1)
EVG UNIVIN(10) EVRU FPOUT(2)
EVG UNIVIN(11) EVRU FPOUT(3)
EVG UNIVIN(12) EVRU FPOUT(4)
EVG UNIVIN(13) EVRU FPOUT(5)
EVG UNIVIN(14) EVRU FPOUT(6)
EVG UNIVIN(15) EVRU FPOUT(7)
EVRD FPIN(0) EVRU FPOUT(0)
EVRD FPIN(1) EVRU FPOUT(1)
EVRD FPIN(2) EVRU FPOUT(2)
EVRD FPIN(3) EVRU FPOUT(3)
EVRD FPIN(4) EVRU FPOUT(4)
EVRD FPIN(5) EVRU FPOUT(5)
EVRD FPIN(6) EVRU FPOUT(6)
EVRD FPIN(7) EVRU FPOUT(7)
EVRU FPIN(0) EVRD FPOUT(0)
EVRU FPIN(1) EVRD FPOUT(1)
EVRU FPIN(2) EVRD FPOUT(2)
EVRU FPIN(3) EVRD FPOUT(3)
EVRU FPIN(4) EVRD FPOUT(4)
EVRU FPIN(5) EVRD FPOUT(5)
EVRU FPIN(6) EVRD FPOUT(6)
EVRU FPIN(7) EVRD FPOUT(7)

Address Register Type Description
0x000 Status UINT32 Status Register
0x004 Control UINT32 Control Register
0x010 UpDCValue UINT32 Upstream Data Compensation Delay Value
0x014 FIFODCValue UINT32 Receive FIFO Data Compensation Delay Value
0x018 IntDCValue UINT32 FCT Internal Datapath Data Compensation Delay Value
0x02C TopologyID UINT32 Timing Node Topology ID
0x040 Port1DCValue UINT32 Port 1 loop delay value
0x044 Port2DCValue UINT32 Port 2 loop delay value
0x048 Port3DCValue UINT32 Port 3 loop delay value
0x04C Port4DCValue UINT32 Port 4 loop delay value
0x050 Port5DCValue UINT32 Port 5 loop delay value
0x054 Port6DCValue UINT32 Port 6 loop delay value
0x058 Port7DCValue UINT32 Port 7 loop delay value
0x05C Port8DCValue UINT32 Port 8 loop delay value
0x1000 – 0x10FF SFP1EEPROM Port 1 SFP Transceiver EEPROM contents (SFP address 0xA0)
0x1100 – 0x11FF SFP1DIAG Port 1 SFP Transceiver diagnostics (SFP address 0xA2)
0x1200 – 0x12FF SFP2EEPROM Port 2 SFP Transceiver EEPROM contents (SFP address 0xA0)
0x1300 – 0x13FF SFP2DIAG Port 2 SFP Transceiver diagnostics (SFP address 0xA2)
0x1400 – 0x14FF SFP3EEPROM Port 3 SFP Transceiver EEPROM contents (SFP address 0xA0)
0x1500 – 0x15FF SFP3DIAG Port 3 SFP Transceiver diagnostics (SFP address 0xA2)
0x1600 – 0x16FF SFP4EEPROM Port 4 SFP Transceiver EEPROM contents (SFP address 0xA0)
0x1700 – 0x17FF SFP4DIAG Port 4 SFP Transceiver diagnostics (SFP address 0xA2)

continues on next page

2.7. EVG Function Register Map 335

EPICS Documentation Sandbox

Table 7 – continued from previous page
Address Register Type Description
0x1800 – 0x18FF SFP5EEPROM Port 5 SFP Transceiver EEPROM contents (SFP address 0xA0)
0x1900 – 0x19FF SFP5DIAG Port 5 SFP Transceiver diagnostics (SFP address 0xA2)
0x1A00 – 0x1AFF SFP6EEPROM Port 6 SFP Transceiver EEPROM contents (SFP address 0xA0)
0x1B00 – 0x1BFF SFP6DIAG Port 6 SFP Transceiver diagnostics (SFP address 0xA2)
0x1C00 – 0x1CFF SFP7EEPROM Port 7 SFP Transceiver EEPROM contents (SFP address 0xA0)
0x1D00 – 0x1DFF SFP7DIAG Port 7 SFP Transceiver diagnostics (SFP address 0xA2)
0x1E00 – 0x1EFF SFP8EEPROM Port 8 SFP Transceiver EEPROM contents (SFP address 0xA0)
0x1F00 – 0x1FFF SFP8DIAG Port 8 SFP Transceiver diagnostics (SFP address 0xA2)

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x001 LINK8 LINK7 LINK6 LINK5 LINK4 LINK3 LINK2 LINK1

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x003 VIO8 VIO7 VIO6 VIO5 VIO4 VIO3 VIO2 VIO1

Bit Function
LINK8 Port 8 RX Status, 1 – link up, 0 – link down
LINK7 Port 7 RX Status, 1 – link up, 0 – link down
LINK6 Port 6 RX Status, 1 – link up, 0 – link down
LINK5 Port 5 RX Status, 1 – link up, 0 – link down
LINK4 Port 4 RX Status, 1 – link up, 0 – link down
LINK3 Port 3 RX Status, 1 – link up, 0 – link down
LINK2 Port 2 RX Status, 1 – link up, 0 – link down
LINK1 Port 1 RX Status, 1 – link up, 0 – link down
VIO8 Port 8 RX Violation
VIO7 Port 7 RX Violation
VIO6 Port 6 RX Violation
VIO5 Port 5 RX Violation
VIO4 Port 4 RX Violation
VIO3 Port 3 RX Violation
VIO2 Port 2 RX Violation
VIO1 Port 1 RX Violation

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x007 CLRV8 CLRV7 CLRV6 CLRV5 CLRV4 CLRV3 CLRV2 CLRV1

Bit Function
CLRV8 Clear RX Violation Port 8
CLRV7 Clear RX Violation Port 7
CLRV6 Clear RX Violation Port 6
CLRV5 Clear RX Violation Port 5
CLRV4 Clear RX Violation Port 4
CLRV3 Clear RX Violation Port 3
CLRV2 Clear RX Violation Port 2
CLRV1 Clear RX Violation Port 1

336 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

2.8 MTCA-EVM-300

Connector / Led Style Level Description
RFIN LEMO RF+10dBm RF Reference Input
TTLIN LEMO TTL ACIN / TTL0 Trigger input
TX1 LC optical Fan-Out Port 1 Transmit (TX 1)
RX1 LC optical Concentrator Port 1 Receiver (RX 1)
TX2 LC optical Fan-Out Port 2 Transmit (TX 2)
RX2 LC optical Concentrator Port 2 Receiver (RX 2)
TX3 LC optical Fan-Out Port 3 Transmit (TX 3)
RX3 LC optical Concentrator Port 3 Receiver (RX 3)
TX4 LC optical Fan-Out Port 4 Transmit (TX 4)
RX4 LC optical Concentrator Port 4 Receiver (RX 4)
TX5 LC optical Fan-Out Port 5 Transmit (TX 5)
RX5 LC optical Concentrator Port 5 Receiver (RX 5)
TX6 LC optical Fan-Out Port 6 Transmit (TX 6)
RX6 LC optical Concentrator Port 6 Receiver (RX 6)
TX7 LC optical Fan-Out Port 7 Transmit (TX 7)
RX7 LC optical Concentrator Port 7 Receiver (RX 7)
TX8 (UP) LC optical Upstream Transmit Optical Output (TX)
RX8 (UP) LC optical Upstream Receiver Optical Input (RX)

2.8.1 TTL Input Levels

The mTCA-EVM-300 has one front panel TTL input. The input is terminated with 50 ohm to ground and is 5V tolerant
even when powered down.

Input specifications are following:

parameter value
connector type LEMO EPK.00.250.NTN
input impedance 50 ohm
VIH > 2.3 V
VIL < 1.0 V

2.8. MTCA-EVM-300 337

https://www.lemo.com/int_en/solutions/specialties/00-nim-camac/epk-00-250-ntn.html

EPICS Documentation Sandbox

2.8.2 Register Mapping

The mTCA-EVM-300 uses the following PCI IDs.

ID name value description
PCI Vendor ID 0x10ee Xilinx
PCI Device ID 0x7011 Kintex 7
PCI Subdevice VID 0x1a3e Micro-Research Finland Oy
PCI Subdevice DID 0x232c mTCA-EVM-300

All EVM functions are memory mapped through PCI BAR0.

Address function description
0x00000-0x0FFFF EVG Event generator
0x10000-0x1FFFF FCT Fan-out registers
0x20000-0x2FFFF EVRD Downstream Event Receiver
0x30000-0x3FFFF EVRU Upstream Event Receiver

2.9 EVM Firmware Version Change Log

FW Version Date Changes Affected HW
0200 11.06.2015 - Prototype release VME-EVM-300
0201 24.09.2015 - Added segmented data buffer VME-EVM-300

Fixed Port 1 TX polarity
010202 01.10.2015 - Changed receive FIFO delay target to 00060000 VME-EVM-300

Added LED test mode (production testing)
Removed test signals from TBOUT

010203 23.11.2015 - Added changes for running with a slower clock on fan-out. VME-EVM-300
020203 18.12.2015 - Changes to data buffer forwarding VME-EVM-300

Changes for rate conversion forwarding, using internal div/2.
0204 12.01.2016 - /2 rate conversion working on events, dbuf and dbits. VME-EVM-300

Improvements to delay measurement system.
0205 13.04.2016 - Moved delay compensation segment from segment 0 to VME-EVM-300

last segment in memory.
Fixed front panel TTL input order.
Fixed race condition in segmented memory buffer trans-
mission that caused dropped software buffers.

FB0206 23.12.2016 - Added upstream and downstream event receivers. VME-EVM-300
Changed beacon event from 0x7A to 0x7E.
Added topology ID
Added delay measurement validity information to delay VME-EVM-300
compensation data

000207 19.01.2017 - Added front panel input phase monitoring and phase VME-EVM-300
select features.
Added external AC input synhronisation features.

010207 09.02.2017 - Fixed occasional dropped out downstream and upstream VME-EVM-300
data buffers/segmented data buffers.
030207 03.05.2017 - Added RF input monitoring logic to automatically recover VME-EVM-300

continues on next page

338 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Table 8 – continued from previous page
FW Version Date Changes Affected HW

from lost RF signal.
Added a way to toggle distributed bus transmission
phase when an external AC synchronisation clock is used.

040207 23.05.2017 - Fixed readout of diagnostics information on single VME-EVM-300
mode transceivers.

050207 26.06.2017 - Fixed transceiver_channel to turn off receiver on first VME-EVM-300
error to prevent propagation of errors up stream.

2.10 FCT Function Register Map

The EVM module can be configured for use as an Event Generator (EVG) or a fanout/concentrator.

This is the register map when EVM is configured as a fanout/concentrator.

Address Register Type Description
0x000 Status UINT32 Status Register
0x004 Control UINT32 Control Register
0x010 UpDCValue UINT32 Upstream Data Compensation Delay Value
0x014 FIFODCValue UINT32 Receive FIFO Data Compensation Delay Value
0x018 IntDCValue UINT32 FCT Internal Datapath Data Compensation Delay Value
0x02C TopologyID UINT32 Timing Node Topology ID
0x040 Port1DCValue UINT32 Port 1 loop delay value
0x044 Port2DCValue UINT32 Port 2 loop delay value
0x048 Port3DCValue UINT32 Port 3 loop delay value
0x04C Port4DCValue UINT32 Port 4 loop delay value
0x050 Port5DCValue UINT32 Port 5 loop delay value
0x054 Port6DCValue UINT32 Port 6 loop delay value
0x058 Port7DCValue UINT32 Port 6 loop delay value
0x05C Port8DCValue UINT32 Port 8 loop delay value
0x1000 – 0x10FF SFP1EEPROM Port 1 SFP Transceiver EEPROM contents (SFP address 0xA0)
0x1100 – 0x11FF SFP1DIAG Port 1 SFP Transceiver diagnostics (SFP address 0xA2)
0x1200 – 0x12FF SFP2EEPROM Port 2 SFP Transceiver EEPROM contents (SFP address 0xA0)
0x1300 – 0x13FF SFP2DIAG Port 2 SFP Transceiver diagnostics (SFP address 0xA2)
0x1400 – 0x14FF SFP3EEPROM Port 3 SFP Transceiver EEPROM contents (SFP address 0xA0)
0x1500 – 0x15FF SFP3DIAG Port 3 SFP Transceiver diagnostics (SFP address 0xA2)
0x1600 – 0x16FF SFP4EEPROM Port 4 SFP Transceiver EEPROM contents (SFP address 0xA0)
0x1700 – 0x17FF SFP4DIAG Port 4 SFP Transceiver diagnostics (SFP address 0xA2)
0x1800 – 0x18FF SFP5EEPROM Port 5 SFP Transceiver EEPROM contents (SFP address 0xA0)
0x1900 – 0x19FF SFP5DIAG Port 5 SFP Transceiver diagnostics (SFP address 0xA2)
0x1A00 – 0x1AFF SFP6EEPROM Port 6 SFP Transceiver EEPROM contents (SFP address 0xA0)
0x1B00 – 0x1BFF SFP6DIAG Port 6 SFP Transceiver diagnostics (SFP address 0xA2)
0x1C00 – 0x1CFF SFP7EEPROM Port 7 SFP Transceiver EEPROM contents (SFP address 0xA0)
0x1D00 – 0x1DFF SFP7DIAG Port 7 SFP Transceiver diagnostics (SFP address 0xA2)
0x1E00 – 0x1EFF SFP8EEPROM Port 8 SFP Transceiver EEPROM contents (SFP address 0xA0)
0x1F00 – 0x1FFF SFP8DIAG Port 8 SFP Transceiver diagnostics (SFP address 0xA2)

Some information about the transceiver EEPROM contents can be found in this document.

2.10. FCT Function Register Map 339

https://www.coherent.com/resources/application-note/networking/ddmi-for-sfp-and-sfp-plus-an-2030.pdf

EPICS Documentation Sandbox

2.10.1 Status Register

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x001 LINK8 LINK7 LINK6 LINK5 LINK4 LINK3 LINK2 LINK1

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x003 VIO8 VIO7 VIO6 VIO5 VIO4 VIO3 VIO2 VIO1

Bit Function
LINK8 Port8 RXStatus, 1–link up, 0–link down
LINK7 Port7 RXStatus, 1–link up, 0–link down
LINK6 Port6 RXStatus, 1–link up, 0–link down
LINK5 Port5 RXStatus, 1–link up, 0–link down
LINK4 Port4 RXStatus, 1–link up, 0–link down
LINK3 Port3 RXStatus, 1–link up, 0–link down
LINK2 Port2 RXStatus, 1–link up, 0–link down
LINK1 Port1 RXStatus, 1–link up, 0–link down
VIO8 Port 8 RX Violation
VIO7 Port 7 RX Violation
VIO6 Port 6 RX Violation
VIO5 Port 5 RX Violation
VIO4 Port 4 RX Violation
VIO3 Port 3 RX Violation
VIO2 Port 2 RX Violation
VIO1 Port 1 RX Violation

2.10.2 Control Register

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x007 CLRV8 CLRV7 CLRV6 CLRV5 CLRV4 CLRV3 CLRV2 CLRV1

Bit Function
CLRV8 Clear RX Violation Port 8
CLRV7 Clear RX Violation Port 7
CLRV6 Clear RX Violation Port 6
CLRV5 Clear RX Violation Port 5
CLRV4 Clear RX Violation Port 4
CLRV3 Clear RX Violation Port 3
CLRV2 Clear RX Violation Port 2
CLRV1 Clear RX Violation Port 1

340 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

2.11 Event Receiver

Event Receivers decode timing events and signals from an optical event stream transmitted by an Event Generator.
Events and signals are received at predefined rate the event clock that is usually divided down from an accelerators
main RF reference. The event receivers lock to the phase event clock of the Event Generator and are thus phase locked
to the RF reference. Event Receivers convert event codes transmitted by an Event Generator to hardware outputs. They
can also generate software interrupts and store the event codes with globally distributed timestamps into FIFO memory
to be read by a CPU.

Block diagram of the Event Receiver (simplified).

2.11.1 Functional Description

After recovering the event clock the Event Receiver demultiplexes the event stream to 8-bit event codes and 8-bit
distributed bus data. The distributed bus may be configured to share its bandwidth with time deterministic data trans-
mission.

2.11. Event Receiver 341

EPICS Documentation Sandbox

2.11.2 Event Decoding

The actions that the Event Receiver takes when it receives an event code are configured by means of the Mapping
RAMs. Each EVR provides two mapping RAMs of 256 × 128 bits. Only one of the RAMs can be active at a time,
however both RAMs may be modified at any time. The event code is applied to the address lines of the active mapping
RAM. The 128-bit data programmed into a specific memory location pointed to by the event code determines what
actions will be taken. The rough classification of actions is as described in the table below.

Event code Offset Internal functions Pulse Triggers ‘Set’ Pulse ‘Reset’ Pulse
0x00 0x0000 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits
0x01 0x0010 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits
0x02 0x0020 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits
.
0xFF 0x0FF0 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits

Function mapping

There are 32 bits (96 to 127) that are reserved for internal functions, some of which are by default mapped to event
codes as shown in the table below. The remaining 96 bits control internal pulse generators. For each pulse generator
there is one bit to trigger the pulse generator, one bit to set the pulse generator output and one bit to clear the pulse
generator output.

Map bit Default event code Function
127 n/a Save event in FIFO
126 n/a Latch timestamp
125 n/a Led event
124 n/a Forward event from RX to TX
123 0x79 Stop event log
122 n/a Log event
102 to 121 n/a (Reserved)
101 0x7a Heartbeat event
100 0x7b Reset Prescalers
99 0x7d Timestamp reset event (TS counter reset)
98 0x7c Timestamp clock event (TS counter increment)
97 0x71 Seconds shift register ‘1’
96 0x70 Seconds shift register ‘0’
80 to 95 n/a (Reserved)
79 n/a Trigger pulse generator 15
. . . n/a

64 n/a Trigger pulse generator 0
48 to 63 n/a (Reserved)
47 n/a Set pulse generator 15 output high
. . . n/a

32 n/a Set pulse generator 0 output high
16 to 31 n/a (Reserved)
15 n/a Reset pulse generator 15 output low
. . . n/a

0 n/a Reset pulse generator 0 output low

342 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

2.11.3 Heartbeat Monitor

A heartbeat monitor is provided to receive heartbeat events. Event code $7A is by default set up to reset the heartbeat
counter. If no heartbeat event is received the counter times out (approx. 1.6 s) and a heartbeat flag is set. The Event
Receiver may be programmed to generate a heartbeat interrupt at timeout.

2.11.4 Event FIFO and Timestamp Events

The Event System provides a global timebase to attach timestamps to collected data and performed actions. The time
stamping system consists of a 32-bit timestamp event counter and a 32-bit seconds counter. The timestamp event
counter either counts received timestamp counter clock events or runs freely with a clock derived from the event clock.
The event counter is also able to run on a clock provided on a distributed bus bit.

The event counter clock source is determined by the prescaler control register. The timestamp event counter is cleared
at the next event counter rising clock edge after receiving a timestamp event counter reset event. The seconds counter
is updated serially by loading zeros and ones (see mapping register bits) into a shift register MSB first. The seconds
register is updated from the shift register at the same time the timestamp event counter is reset.

The timestamp event counter and seconds counter contents may be latched into a timestamp latch. Latching is deter-
mined by the active event map RAM and may be enabled for any event code. An event FIFO memory is implemented
to store selected event codes with attached timing information. The 80-bit wide FIFO can hold up to 511 events. The
recorded event is stored along with 32-bit seconds counter contents and 32-bit timestamp event counter contents at the
time of reception. The event FIFO as well as the timestamp counter and latch are accessible by software.

2.11. Event Receiver 343

EPICS Documentation Sandbox

2.11.5 Event Log

Up to 512 events with timestamping information can be stored in the event log. The log is implemented as a ring buffer
and is accessible as a memory region. Logging events can be stopped by an event or software.

2.11.6 Distributed Bus and Data Transmission

The distributed bus is able to carry eight simultaneous signals sampled with half the event clock rate over the fibre optic
transmission media. The distributed bus signals may be output on programmable front panel outputs. The distributed
bus bandwidth is shared by transmission of a configurable size data buffer to up to 2 kbytes.

2.11.7 Pulse Generators

The structure of the pulse generation logic is shown in the figure below. Three signals from the mapping RAM control
the output of the pulse: trigger, ‘set’ pulse and ‘reset’ pulse. A trigger causes the delay counter to start counting, when
the end-of-count is reached the output pulse changes to the ‘set’ state and the width counter starts counting. At the end
of the width count the output pulse is cleared. The mapping RAM signal ‘set’ and ‘reset’ cause the output to change
state immediately without any delay.

Starting from firmware version 0200 pulse generators can also be triggered from rising edges of distributed bus signals
or EVR internal prescalers.

32 bit registers are reserved for both counters and the prescaler, however, the prescaler is not necessarily implemented
for all channels and may be hard coded to 1 in case the prescaler is omitted. Software may write 0xFFFFFFFF to these
registers and read out the actual width or hard-coded value of the register. For example, if the width counter is limited
to 16 bits a read will return 0x0000FFFF after a write of 0xFFFFFFFF.

Pulse Generator

344 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Pulse Generator Gates

Depending on firmware revision/form factor a number of pulse generators are configured as event triggered gates only
and can be used to mask or enable pulse generator triggers.

The VME-EVR-300, PCIe-EVR- 300DC and mTCA-EVR-300 have four pulse generators configured as gates, pulse
generators 28 to 31 which correspond gates 0 to 3.

2.11.8 Prescalers

The Event Receiver provides a number of programmable prescalers. The frequencies are programmable and are derived
from the event clock. A special event code reset prescalers $7B causes the prescalers to be synchronously reset, so the
frequency outputs will be in same phase across all event receivers.

2.11.9 Programmable Front Panel, Universal I/O and Backplane Connections

All outputs are programmable: each pulse generator output, prescaler and distributed bus bit can be mapped to any
output. Starting with firmware version 0200 each output can have two sources which are logically OR’ed together. The
mapping for a single source is shown in table below.

Each output has a two byte mapping register and each byte corresponds a single source. An unused mapping source
should be set to 63 (0x3f). In case of a bidirectional signal to tri-state set both bytes to 61 (0x3d).

Table 18: Output mapping values

Mapping ID Signal
0 to n-1 Pulse generator output (number n of pulse generators depends on HW and firmware version)
n to 31 (Reserved)
32 Distributed bus bit 0 (DBUS0)
.
39 Distributed bus bit 7 (DBUS7)
40 Prescaler 0
41 Prescaler 1
42 Prescaler 2
43 to 47 (Reserved)
48 Flip-flop output 0
.
55 Flip-flop output 7
56 to 58 (Reserved)
59 Event clock output (only on PXIe-EVR-300)
60 Event clock output with 180° phase shift (only on PXIe-EVR-300)
61 Tri-state output (for PCIe-EVR-300DC with input module populated in IFB-300’s Universal I/O

slot)
62 Force output high (logic 1)
63 Force output low (logic 0)

2.11. Event Receiver 345

EPICS Documentation Sandbox

2.11.10 Flip-flop Outputs (from FW version 0E0207)

There are 8 flip-flop outputs. Each of these is using two pulse generators, one for setting the output high and the other
one for resetting the output low. In the table below you can see the relationship between flip-flops and pulse generators
and the output mapping IDs.

flip-flop mappingID Set Reset
0 48 Pulse gen. 0 Pulse gen. 1
1 49 Pulse gen. 2 Pulse gen. 3
2 50 Pulse gen. 4 Pulse gen. 5
3 51 Pulse gen. 6 Pulse gen. 7
4 52 Pulse gen. 8 Pulse gen. 9
5 53 Pulse gen. 10 Pulse gen. 11
6 54 Pulse gen. 12 Pulse gen. 13
7 55 Pulse gen. 14 Pulse gen. 15

2.11.11 Front Panel Universal I/O Slots

Universal I/O slots provide different types of output with exchangeable Universal I/O modules. Each module provides
two outputs e.g. two TTL output, two NIM output or two optical outputs. The source for these outputs is selected with
mapping registers.

VME-EVR-300 GTX Front Panel Outputs and mTCA-EVR TCLKA/TCLKB Clocks The VME-EVR-300 has four
GTX front panel outputs, two in Universal I/O slot UNIV6/UNIV7 and CML outputs CML0 and CML1. The GTX
Outputs provide low jitter signals with special outputs. The outputs can work in different configurations: pulse mode,
pattern mode and frequency mode. The difference com- pared to the CML output of the VME-EVR-230RF is that
instead of 20 bits per event clock cycle the GTX outputs have 40 bits per event clock cycle doubling the resolution
to 200 ps/bit at an event clock of 125 MHz. The mTCA-EVR-300 TCLKA and TCLKB backplane clock operate the
same way as VME-EVR-300 GTX front panel outputs. The pulse mapping is controlled through UNIV16 (TCLKA)
and UNIV17 (TCLKB) mapping registers.

2.11.12 GTX Pulse Mode

The source for these outputs is selected in a similar way than the standard outputs using mapping registers, however,
the output logic monitors the state of this signal and distinguishes between state low (00), rising edge (01), high state
(11) and falling edge (10). Based on the state a 40 bit pattern is sent out with a bit rate of 40 times the event clock rate.

346 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

• When the source for a GTX output is low and was low one event clock cycle earlier (state low), the GTX output
repeats the 40 bit pattern stored in pattern_00 register.

• When the source for a GTX output is high and was low one event clock cycle earlier (state rising), the GTX
output sends out the 40 bit pattern stored in pattern_01 register.

• When the source for a GTX output is high and was high one event clock cycle earlier (state high), the GTX output
repeats the 40 bit pattern stored in pattern_11 register.

• When the source for a GTX output is low and was high one event clock cycle earlier (state falling), the GTX
output sends out the 40 bit pattern stored in pattern_10 register.

For an event clock of 125 MHz the duration of one single GTX output bit is 200 ps. These outputs allow for producing
fine grained adjustable output pulses and clock frequencies.

2.11.13 GTX Frequency Mode

In frequency mode one can generate clocks where the clock period can be defined in steps of 1/40th part of the event
clock cycle i.e. 200 ps step with an event clock of 125 MHz. There are some limitations, however:

• Clock high time and clock low time must be 40/40th event clock period steps

• Clock high time and clock low time must be < 65536/40th event clock period steps

The clock output can be synchronized by one of the pulse generators, distributed bus signal etc. When a rising edge
of the mapped output signal is detected the frequency generator takes its output value from the trigger level bit and
the counter value from the trigger position register. Thus one can adjust the phase of the synchronized clock in 1/40th
steps of the event clock period. To change the generated clock phase in respect to the trigger we can select the trigger
polarity by bit CMLTL in the CML Control register and the trigger position also in the CML Control register.

2.11. Event Receiver 347

EPICS Documentation Sandbox

2.11.14 GTX Pattern Mode

In pattern mode one can generate arbitrary bit patterns taking into account following:

- The pattern length is a multiple of 40 bits, where each bit is
1/40th of the event clock period

- Maximum length of the arbitrary pattern is 40 × 2048 bits
- A pattern can be triggered from any pulse generator, distributed

bus bit etc. When triggered the pattern generator starts sending
40 bit words from the pattern memory sequentially starting from
position 0. This goes on until the pattern length set by the
samples register has been reached.

- If the pattern generator is in recycle mode the pattern
continues immediately from position 0 of the pattern memory.

- If the pattern generator is in single pattern mode, the pattern
stops and the 40 bit word from the last position of the pattern
memory (2047) is sent out until the pattern generator is
triggered again.

2.11.15 Configurable Size Data Buffer (EVR)

Pre-DC (Delay Compensation) event systems provided a way to to transmit configurable size data packets that may
be transmitted over the event system link. The buffer transmission size is configured in the Event Generator to up to
2 kbytes. The Event Receiver is able to receive buffers of any size from 4 bytes to 2 kbytes in four byte (long word)
increments.

2.11.16 Segmented Data Buffer

With the addition of delay compensation a segmented data buffer has been introduced and it can coexist with the
configurable size data buffer. The segmented data buffer is divided into 16 byte segments that allow updating only part
of the buffer memory with the remaining segments left untouched.

When starting a data transmission the Event Generator first sends the starting segment number that defines the starting
address in the buffer. The data buffer address offset is the segment number * 16 bytes. The Event Receiver writes the
received bytes into the data buffer and when transmission is complete a receive complete flag is raised for the starting
segment of the packet transmission. The transmission can overlap several segments, however, the flag is raised only for
the starting segment. If there is a checksum mismatch the checksum error flag for the starting segment is set. In case
the receive complete flag already was set before the new data was received an segment overflow flag is set. Flags are
cleared by writing a ‘1’ to the receive flag. Each segment has a receive data counter and after completion of the transfer
the receive data counter of the starting segment is updated with the actual number of bytes received in the transmission.

The procedure to receive a segmented data buffer is following:

• check that receive complete flag for received segment is set

• check that starting segment overflow flag is cleared

• read transmission size from segment receive data counter

• copy segment data from segmented data buffer memory into system RAM

• verify that starting segment overflow flag is still cleared

• clear segment receive complete flag

Starting with firmware 0205 the delay compensation logic uses the last 16 byte segment of the segmented data buffer
for delay compensation data.

348 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

2.11.17 Interrupt Generation

The Event Receiver has multiple interrupt sources which all have their own enable and flag bits. The following events
may be programmed to generate an interrupt:

• Receiver link state change

• Receiver violation: bit error or the loss of signal.

• Lost heartbeat: heartbeat monitor timeout.

• Write operation of an event to the event FIFO.

• Event FIFO is full.

• Data Buffer reception complete.

In addition to the events listed above an interrupt can be generated from one of the pulse generator outputs, distributed
bus bits or prescalers. The pulse interrupt can be mapped in a similar way as the front panel outputs.

2.11.18 External Event Input

An external hardware input is provided to be able to take an external pulse to generate an internal event. This event
will be handled as any other received event.

2.11.19 Programmable Reference Clock

The event receiver requires a reference clock to be able to synchronise on the incoming event stream sent by the event
generator. For flexibility a programmable reference clock is provided to allow the use of the equipment in various
applications with varying frequency requirements. Please note before programming a new operating frequency with
the fractional synthesizer the operating frequency (in MHz) has to be set in the UsecDivider register. This is essential
as the event receiver’s PLL cannot lock if it does not know the frequency range to lock to.

2.11.20 Fractional Synthesiser

The clock reference for the event receiver is generated on-board the event receiver using a fractional synthesiser. A
Microchip (formerly Micrel) SY87739L Protocol Transparent Fractional-N Synthesiser with a reference clock of 24
MHz is used. The following table lists programming bit patterns for a few frequencies.

Event Rate Configuration Bit Pattern Reference Output Precision (theoretical)
142.8 MHz 0x0891C100 142.857 MHz 0
499.8 MHz/4 = 124.95 MHz 0x00FE816D 124.95 MHz 0
499.654 MHz/4 = 124.9135 MHz 0x0C928166 124.907 MHz -52 ppm
476 MHz/4 = 119 MHz 0x018741AD 119 MHz 0
106.25 MHz (fibre channel) 0x049E81AD 106.25 MHz 0
499.8 MHz/5 = 99.96 MHz 0x025B41ED 99.956 MHz -40 ppm
50 MHz 0x009743AD 50.0 MHz 0
499.8 MHz/10 = 49.98 MHz 0x025B43AD 49.978 MHz -40 ppm
499.654MHz/4=124.9135MHz 0x0C928166 124.907MHz -52 ppm
50 MHz 0x009743AD 50.0 MHz 0

The event receiver reference clock is required to be in ±100 ppm range of the event generator event clock.

2.11. Event Receiver 349

https://www.microchip.com/
http://ww1.microchip.com/downloads/en/devicedoc/sy87739l.pdf

EPICS Documentation Sandbox

2.12 MTCA-EVR-300

Connector / Led Style Level Description
USB Micro-USB MMC diagnostics serial port / JTAG interface
Link TX (SFP) LC Optical 850 nm Event link Transmit

Green: TX enable
Red: Fract.syn. not locked
Blue: Event out

Link RX (SFP) LC Optical 850 nm Event link Receiver
Green: link up
Red: link violation detected
Blue: event led

IFB VHDCI LVDS IFB-300 Interface Box connection
IN0 LEMO TTL FPTTL0 Trigger input
IN1 LEMO TTL (3.3V / 5V) FPTTL1 Trigger input
OUT0 LEMO 3.3V LVTTL TTL Front panel output 0
OUT1 LEMO 3.3V LVTTL TTL Front panel output 1
OUT2 LEMO 3.3V LVTTL TTL Front panel output 2
OUT3 LEMO 3.3V LVTTL TTL Front panel output 3
TCLKA mTCA.4 LVDS TCLKA clock on backplane

This signal is driven by CML/GTX logic block 0
Mapped as Universal Output 16

TCLKB mTCA.4 LVDS TCLKB clock on backplane
This signal is driven by CML/GTX logic block 1
Mapped as Universal Output 17

RX17 mTCA.4 MLVDS Backplane output 0
TX17 mTCA.4 MLVDS Backplane output 1
RX18 mTCA.4 MLVDS Backplane output 2
TX18 mTCA.4 MLVDS Backplane output 3
RX19 mTCA.4 MLVDS Backplane output 4
TX19 mTCA.4 MLVDS Backplane output 5
RX20 mTCA.4 MLVDS Backplane output 6
TX20 mTCA.4 MLVDS Backplane output 7

350 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

2.13 VME-EVR-300

2.13.1 VME-EVR-300 Front Panel Connections

The front panel of the Event Receiver includes the following connections and status leds:

Connector /
Led

Style Level Description

HS Red Led Module Failure

HS Blue Led Module Powered Down

ACT 3-color Led SAM3X Activity Led

USB Micro-USB SAM3X Serial port / JTAG interface

10/100 RJ45 SAM3X Ethernet Interface

IN0 LEMO TTL (3.3V / 5V) FPTTL0 Trigger input
IN1 LEMO TTL (3.3V / 5V) FPTTL1 Trigger input
UNIV0/1 Universal

slot
Universal Output 0/1

UNIV2/3 Universal
slot

Universal Output 2/3

UNIV4/5 Universal
slot

Universal Output 4/5

UNIV6/7 Universal
slot

Universal Output 6/7

The output signals come through CML/GTX logic block
0/1

CML0 LEMO EPY CML Mapped as Universal Output 8
The output signals come through CML/GTX logic block 2

CML1 LEMO EPY CML Mapped as Universal Output 9
The output signals come through CML/GTX logic block 3

Link TX (SFP) LC Optical 850 nm Event link Transmit
Link RX (SFP) LC Optical 850 nm Event link Receiver

2.13. VME-EVR-300 351

EPICS Documentation Sandbox

VME TTL Input Levels

The VME-EVR-300 has two front panel TTL inputs. The inputs have a configurable input termination than can be set
by a jumper. The input can be terminated with 50 ohm to ground or 220 ohm to +3.3V. The front panel inputs are 5V
tolerant even when powered down.

Input specifications are following:

parameter value
connector type LEMO EPK.00.250.NTN
input impedance 50ohm
VIH > 2.3 V
VIL < 1.0 V

2.14 Event Receiver Registermap

Event Receiver register/memory map.

2.14.1 Register Map

Address Register Type Description
0x000 Status UINT32 Status Register
0x004 Control UINT32 Control Register
0x008 IrqFlag UINT32 Interrupt Flag Register
0x00C IrqEnable UINT32 Interrupt Enable Register
0x010 PulseIrqMap UINT32 Mapping register for pulse interrupt
0x018 SWEvent UINT32 Software event register
0x01C PCIIrqEnable UINT32 PCI Interrupt Enable Register
0x020 DataBufCtrl UINT32 Data Buffer Control and Status Register
0x024 TxDataBufCtrl UINT32 TX Data Buffer Control and Status Register
0x028 TxSegBufCtrl UINT32 TX Segmented Data Buffer Control and Status Register
0x02C FWVersion UINT32 Firmware Version Register
0x040 EvCntPresc UINT32 Event Counter Prescaler
0x04C UsecDivider UINT32 Divider to get from Event Clock to 1 MHz
0x050 ClockControl UINT32 Event Clock Control Register
0x05C SecSR UINT32 Seconds Shift Register
0x060 SecCounter UINT32 Timestamp Seconds Counter
0x064 EventCounter UINT32 Timestamp Event Counter
0x068 SecLatch UINT32 Timestamp Seconds Counter Latch
0x06C EvCntLatch UINT32 Timestamp Event Counter Latch
0x070 EvFIFOSec UINT32 Event FIFO Seconds Register
0x074 EvFIFOEvCnt UINT32 Event FIFO Event Counter Register
0x078 EvFIFOCode UINT16 Event FIFO Event Code Register
0x07C LogStatus UINT32 Event Log Status Register
0x080 FracDiv UINT32 Micrel SY87739L Fractional Divider Configuration Word
0x090 GPIODir UINT32 Front Panel UnivIO GPIO signal direction
0x094 GPIOIn UINT32 Front Panel UnivIO GPIO input register
0x098 GPIOOut UINT32 Front Panel UnivIO GPIO output register

continues on next page

352 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Table 11 – continued from previous page
Address Register Type Description
0x0A0 SPIData UINT32 SPI Data Register
0x0A4 SPIControl UINT32 SPI Control Register
0x0B0 DCTarget UINT32 Delay Compensation Target Value
0x0B4 DCRxValue UINT32 Delay Compensation Transmission Path Delay Value
0x0B8 DCIntValue UINT32 Delay Compensation Internal Delay Value
0x0BC DCStatus UINT32 Delay Compensation Status Register
0x0C0 TopologyID UINT32 Timing Node Topology ID
0x0E0 SeqRamCtrl UINT32 Sequence RAM Control Register
0x100 Prescaler0 UINT32 Prescaler 0 Divider
0x104 Prescaler1 UINT32 Prescaler 1 Divider
0x108 Prescaler2 UINT32 Prescaler 2 Divider
0x10C Prescaler3 UINT32 Prescaler 3 Divider
0x110 Prescaler4 UINT32 Prescaler 4 Divider
0x114 Prescaler5 UINT32 Prescaler 5 Divider
0x118 Prescaler6 UINT32 Prescaler 6 Divider
0x11C Prescaler7 UINT32 Prescaler 7 Divider
0x120 PrescPhase0 UINT32 Prescaler 0 Phase Offset Register
0x124 PrescPhase1 UINT32 Prescaler 1 Phase Offset Register
0x128 PrescPhase2 UINT32 Prescaler 2 Phase Offset Register
0x12C PrescPhase3 UINT32 Prescaler 3 Phase Offset Register
0x130 PrescPhase4 UINT32 Prescaler 4 Phase Offset Register
0x134 PrescPhase5 UINT32 Prescaler 5 Phase Offset Register
0x138 PrescPhase6 UINT32 Prescaler 6 Phase Offset Register
0x13C PrescPhase7 UINT32 Prescaler 7 Phase Offset Register
0x140 PrescTrig0 UINT32 Prescaler 0 Pulse Generator Trigger Register
0x144 PrescTrig1 UINT32 Prescaler 1 Pulse Generator Trigger Register
0x148 PrescTrig2 UINT32 Prescaler 2 Pulse Generator Trigger Register
0x14C PrescTrig3 UINT32 Prescaler 3 Pulse Generator Trigger Register
0x150 PrescTrig4 UINT32 Prescaler 4 Pulse Generator Trigger Register
0x154 PrescTrig5 UINT32 Prescaler 5 Pulse Generator Trigger Register
0x158 PrescTrig6 UINT32 Prescaler 6 Pulse Generator Trigger Register
0x15C PrescTrig7 UINT32 Prescaler 7 Pulse Generator Trigger Register
0x180 DBusTrig0 UINT32 DBus Bit 0 Pulse Generator Trigger Register
0x184 DBusTrig1 UINT32 DBus Bit 1 Pulse Generator Trigger Register
0x188 DBusTrig2 UINT32 DBus Bit 2 Pulse Generator Trigger Register
0x18C DBusTrig3 UINT32 DBus Bit 3 Pulse Generator Trigger Register
0x190 DBusTrig4 UINT32 DBus Bit 4 Pulse Generator Trigger Register
0x194 DBusTrig5 UINT32 DBus Bit 5 Pulse Generator Trigger Register
0x198 DBusTrig6 UINT32 DBus Bit 6 Pulse Generator Trigger Register
0x19C DBusTrig7 UINT32 DBus Bit 7 Pulse Generator Trigger Register
0x200 Pulse0Ctrl UINT32 Pulse 0 Control Register
0x204 Pulse0Presc UINT32 Pulse 0 Prescaler Register
0x208 Pulse0Delay UINT32 Pulse 0 Delay Register
0x20C Pulse0Width UINT32 Pulse 0 Width Register
0x210 Pulse 1 Registers
0x220 Pulse 2 Registers
. . .
0x3F0 Pulse 31 Registers
0x400 FPOutMap0 UINT16 Front Panel Output 0 Map Register

continues on next page

2.14. Event Receiver Registermap 353

EPICS Documentation Sandbox

Table 11 – continued from previous page
Address Register Type Description
0x402 FPOutMap1 UINT16 Front Panel Output 1 Map Register
0x404 FPOutMap2 UINT16 Front Panel Output 2 Map Register
0x406 FPOutMap3 UINT16 Front Panel Output 3 Map Register
0x408 FPOutMap4 UINT16 Front Panel Output 4 Map Register
0x40A FPOutMap5 UINT16 Front Panel Output 5 Map Register
0x40C FPOutMap6 UINT16 Front Panel Output 6 Map Register
0x40E FPOutMap7 UINT16 Front Panel Output 7 Map Register
0x440 UnivOutMap0 UINT16 Front Panel Universal Output 0 Map Register
0x442 UnivOutMap1 UINT16 Front Panel Universal Output 1 Map Register
0x444 UnivOutMap2 UINT16 Front Panel Universal Output 2 Map Register
0x446 UnivOutMap3 UINT16 Front Panel Universal Output 3 Map Register
0x448 UnivOutMap4 UINT16 Front Panel Universal Output 4 Map Register
0x44A UnivOutMap5 UINT16 Front Panel Universal Output 5 Map Register
0x44C UnivOutMap6 UINT16 Front Panel Universal Output 6 Map Register
0x44E UnivOutMap7 UINT16 Front Panel Universal Output 7 Map Register
0x450 UnivOutMap8 UINT16 Front Panel Universal Output 8 Map Register
0x452 UnivOutMap9 UINT16 Front Panel Universal Output 9 Map Register
0x454 UnivOutMap10 UINT16 Front Panel Universal Output 10 Map Register
0x456 UnivOutMap11 UINT16 Front Panel Universal Output 11 Map Register
0x458 UnivOutMap12 UINT16 Front Panel Universal Output 12 Map Register
0x45A UnivOutMap13 UINT16 Front Panel Universal Output 13 Map Register
0x45C UnivOutMap14 UINT16 Front Panel Universal Output 14 Map Register
0x45E UnivOutMap15 UINT16 Front Panel Universal Output 15 Map Register
0x460 UnivOutMap16 UINT16 Front Panel Universal Output 16 Map Register
0x462 UnivOutMap17 UINT16 Front Panel Universal Output 17 Map Register
0x480 TBOutMap0 UINT16 Transition Board Output 0 Map Register
0x482 TBOutMap1 UINT16 Transition Board Output 1 Map Register
0x484 TBOutMap2 UINT16 Transition Board Output 2 Map Register
0x486 TBOutMap3 UINT16 Transition Board Output 3 Map Register
0x488 TBOutMap4 UINT16 Transition Board Output 4 Map Register
0x48A TBOutMap5 UINT16 Transition Board Output 5 Map Register
0x48C TBOutMap6 UINT16 Transition Board Output 6 Map Register
0x48E TBOutMap7 UINT16 Transition Board Output 7 Map Register
0x490 TBOutMap8 UINT16 Transition Board Output 8 Map Register
0x492 TBOutMap9 UINT16 Transition Board Output 9 Map Register
0x494 TBOutMap10 UINT16 Transition Board Output 10 Map Register
0x496 TBOutMap11 UINT16 Transition Board Output 11 Map Register
0x498 TBOutMap12 UINT16 Transition Board Output 12 Map Register
0x49A TBOutMap13 UINT16 Transition Board Output 13 Map Register
0x49C TBOutMap14 UINT16 Transition Board Output 14 Map Register
0x49E TBOutMap15 UINT16 Transition Board Output 15 Map Register
0x4A0 TBOutMap16 UINT16 Transition Board Output 16 Map Register
0x4A2 TBOutMap17 UINT16 Transition Board Output 17 Map Register
0x4A4 TBOutMap18 UINT16 Transition Board Output 18 Map Register
0x4A6 TBOutMap19 UINT16 Transition Board Output 19 Map Register
0x4A8 TBOutMap20 UINT16 Transition Board Output 20 Map Register
0x4AA TBOutMap21 UINT16 Transition Board Output 21 Map Register
0x4AC TBOutMap22 UINT16 Transition Board Output 22 Map Register
0x4AE TBOutMap23 UINT16 Transition Board Output 23 Map Register

continues on next page

354 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Table 11 – continued from previous page
Address Register Type Description
0x4B0 TBOutMap24 UINT16 Transition Board Output 24 Map Register
0x4B2 TBOutMap25 UINT16 Transition Board Output 25 Map Register
0x4B4 TBOutMap26 UINT16 Transition Board Output 26 Map Register
0x4B6 TBOutMap27 UINT16 Transition Board Output 27 Map Register
0x4B8 TBOutMap28 UINT16 Transition Board Output 28 Map Register
0x4BA TBOutMap29 UINT16 Transition Board Output 29 Map Register
0x4BC TBOutMap30 UINT16 Transition Board Output 30 Map Register
0x4BE TBOutMap31 UINT16 Transition Board Output 31 Map Register
0x4C0 BPOutMap0 UINT16 Backplane Output 0 Map Register
0x4C2 BPOutMap1 UINT16 Backplane Output 1 Map Register
0x4C4 BPOutMap2 UINT16 Backplane Output 2 Map Register
0x4C6 BPOutMap3 UINT16 Backplane Output 3 Map Register
0x4C8 BPOutMap4 UINT16 Backplane Output 4 Map Register
0x4CA BPOutMap5 UINT16 Backplane Output 5 Map Register
0x4CC BPOutMap6 UINT16 Backplane Output 6 Map Register
0x4CE BPOutMap7 UINT16 Backplane Output 7 Map Register
0x500 FPInMap0 UINT32 Front Panel Input 0 Mapping Register
0x504 FPInMap1 UINT32 Front Panel Input 1 Mapping Register
0x510 UnivInMap0 UINT32 Universal Input 0 Mapping Register
0x514 UnivInMap1 UINT32 Universal Input 1 Mapping Register
. . .
0x560 BPInMap0 UINT32 Backplane Input 0 Mapping Register
0x564 BPInMap1 UINT32 Backplane Input 1 Mapping Register
. . .
0x610 GTX0Ctrl UINT32 UNIV6 / GTX0CML Output Control Register
0x614 GTX0HP UINT16 UNIV6 / GTX0 Output High Period Count
0x616 GTX0LP UINT16 UNIV6 / GTX0 Output Low Period Count
0x618 GTX0Samp UINT32 UNIV6 / GTX0 Output Number of 40 bit word patterns
0x630 GTX1Ctrl UINT32 UNIV7 / GTX1CML 5 Output Control Register
0x634 GTX1HP UINT16 UNIV7 / GTX1 Output High Period Count
0x636 GTX1LP UINT16 UNIV7 / GTX1 Output Low Period Count
0x638 GTX1Samp UINT32 UNIV7 / GTX1 Output Number of 40 bit word patterns
0x650 GTX2Ctrl UINT32 CML 0 / GTX2 Output Control Register
0x654 GTX2HP UINT16 CML 0 / GTX2 Output High Period Count
0x656 GTX2LP UINT16 CML 0 / GTX2 Output Low Period Count
0x658 GTX2Samp UINT32 CML 0 / GTX2 Output Number of 40 bit word patterns
0x670 GTX3Ctrl UINT32 CML1 / GTX3 Output Control Register
0x674 GTX3HP UINT16 CML1 / GTX3 Output High Period Count
0x676 GTX3LP UINT16 CML1 / GTX3 Output Low Period Count
0x678 GTX3Samp UINT32 CML1 / GTX3 Output Number of 40 bit word patterns
0x800 – 0xFFF DataBuf Data Buffer Receive Memory
0x1000 – 0x17FF Diagnostics counters
0x1800 – 0x1FFF TxDataBuf Data Buffer Transmit Memory
0x2000 – 0x3FFF EventLog 512 x 16 byte position Event Log
0x4000 – 0x4FFF MapRam1 Event Mapping RAM 1
0x5000 – 0x5FFF MapRam2 Event Mapping RAM 2
0x8000 – 0x80FF configROM
0x8100 – 0x81FF scratchRAM
0x8200 – 0x82FF SFPEEPROM SFP Transceiver EEPROM contents (SFP address 0xA0)

continues on next page

2.14. Event Receiver Registermap 355

EPICS Documentation Sandbox

Table 11 – continued from previous page
Address Register Type Description
0x8300 – 0x83FF SFPDIAG SFP Transceiver diagnostics (SFP address 0xA2)
0x8800 DataBufRXSize0 UINT32 Segmented Data Buffer Segment 0 Receive Size Register
0x8804 SDataBufRXSize0 UINT32 Segmented Data Buffer Segment 1 Receive Size Register
0x89FC SDataBufRXSize127 UINT32 Segmented Data Buffer Segment 127 Receive Size Register
0x8F80 – 0x8F8F SDataBufSIrqEna Segmented Data Buffer Segment Interrupt Enable Register
0x8FA0 – 0x8FAF SDataBufCSFlag Segmented Data Buffer Segment Checksum Flags
0x8FC0 – 0x8FCF SDataBufOVFlag Segmented Data Buffer Segment Overflow Flags
0x8FE0 – 0x8FEF SDataBufRxFlag Segmented Data Buffer Segment Receive Flags
0x9000 – 0x97FF SDataBufData Segmented Data Buffer Segment Data Memory
0xA000 – 0xA7FF SDataBufData Segmented Data Buffer Transmit Memory
0xC000 – 0xFFFF SeqRam Sequence RAM
0x20000 – 0x23FFF GTX0MEM Pattern memory:

16k bytes GTX output 0 (VME-EVR-300)
0x24000 – 0x27FFF GTX1MEM Pattern memory:

16k bytes GTX output 1 (VME-EVR-300)
0x28000 – 0x2BFFF GTX2MEM Pattern memory:

16k bytes GTX output 2 (VME-EVR-300)
0x2C000 – 0x2FFFF GTX3MEM Pattern memory:

16k bytes GTX output 3 (VME-EVR-300)

2.14.2 Status Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x000 DBUS7 DBUS6 DBUS5 DBUS4 DBUS3 DBUS2 DBUS1 DBUS0
address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x001 LEGVIO

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x002

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x003 SFPMOD LINK LOGSTP

356 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Bit Function
DBUS7 Read status of DBUS bit 7
DBUS6 Read status of DBUS bit 6
DBUS5 Read status of DBUS bit 5
DBUS4 Read status of DBUS bit 4
DBUS3 Read status of DBUS bit 3
DBUS2 Read status of DBUS bit 2
DBUS1 Read status of DBUS bit 1
DBUS0 Read status of DBUS bit 0
LEGVIO Legacy VIO (series 100, 200 and 230)
SFPMOD SFP module status:

‘0’ – plugged in

‘1’ – no module installed

LINK Link status:
‘0’ – link down

‘1’ – link up

LOGSTP Event Log stopped flag

2.14.3 Control Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x004 EVREN EVFWD TXLP RXLP OUTEN SRST LEMDE GTXIO
address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x005 DCENA

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x006 TSDBUS RSTS LTS MAPEN MAPRS

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x007 LOGRS LOGEN LOGDIS LOGSE RSFIFO

Bit Function
EVREN Event Receiver Master enable
EVFWD Event forwarding enable:

0 – Events not forwarded
1 – Events received with forward bit in mapping RAM set are sent back on TX

TXLP Transmitter loopback:
0 – Receive signal from SFP transceiver (normal operation)
1 – Loopback EVR TX into EVR RX

RXLP Receiver loopback:
0 – Transmit signal from EVR on SFP transceiver TX
1 – Loopback SFP RX on SFP TX

OUTEN Output enable for FPGA external components / IFB-300 (cPCI-EVRTG-300, PCIe-EVR-300, PXIe-EVR-300I)
continues on next page

2.14. Event Receiver Registermap 357

EPICS Documentation Sandbox

Table 12 – continued from previous page
Bit Function

0 – disable outputs
1 – enable outputs

SRST Soft reset IP
LEMDE Little endian mode (cPCI-EVR-300, PCIe-EVR-300)

0 – PCI core in big endian mode (power up default)
1 – PCI core in little endian mode

GTXIO GUN-TX output hardware inhibit override
0 – honor hardware inhibit signal (default)
1 – inhibit override, don’t care about hardware inhibit input state
DCENA Delay compensation mode enable
0 – Delay compensation mode disable (receive FIFO depth controlled by DC Target).
1 – Delay compensation mode enable (receive FIFO depth controlled by DC Target - Datapath Delay).

TSDBUS Use timestamp counter clock on DBUS4
RSTS Reset Timestamp. Write 1 to reset timestamp event counter and timestamp latch.
LTS Latch Timestamp: Write 1 to latch timestamp from timestamp event counter to timestamp latch.
MAPEN Event mapping RAM enable.
MAPRS Mapping RAM select bit for event decoding:

0 – select mapping RAM 1
1 – select mapping RAM 2.

LOGRS Reset Event Log. Write 1 to reset log.
LOGEN Enable Event Log. Write 1 to (re)enable event log.
LOGDIS Disable Event Log. Write 1 to disable event log.
LOGSE Log Stop Event Enable.
RSFIFO Reset Event FIFO. Write 1 to clear event FIFO.

2.14.4 Interrupt Flag Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x008

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x009 IFSOV IFSHF

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x00A IFSSTO IFSSTA

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x00B IFSEGD IFLINK IFDBUF IFHW IFEV IFHB IFFF IFVIO

358 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Bit Function
IFSOV Sequence RAM sequence roll over interrupt flag
IFSHF Sequence RAM sequence halfway through interrupt flag
IFSSTO Sequence RAM sequence stop interrupt flag
IFSSTA Sequence RAM sequence start interrupt flag
IFSEGD Segmented data buffer interrupt flag
IFLINK Link state change interrupt flag
IFDBUF Data buffer interrupt flag
IFHW Hardware interrupt flag (mapped signal)
IFEV Event interrupt flag
IFHB Heartbeat interrupt flag
IFFF Event FIFO full flag
IFVIO Receiver violation flag

2.14.5 Interrupt Enable Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x00C IRQEN

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x00D IESOV IESHF

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x00E IESSTO IESSTA

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x00F IESEGD IELINK IEDBUF IEHW IEEV IEHB IEFF IEVIO

Bit Function
IRQEN Master interrupt enable:

0 – disable all interrupts

1 – allow interrupts

IESOV Sequence RAM sequence roll over interrupt enable
IESHF Sequence RAM sequence halfway through interrupt enable
IESSTO Sequence RAM sequence stop interrupt enable
IESSTA Sequence RAM sequence start interrupt enable
IESEGD Segmented data buffer interrupt enable
IELINK Link state change interrupt enable
IEDBUF Data buffer interrupt enable
IEHW Hardware interrupt enable (mapped signal)
IEEV Event interrupt enable
IEHB Heartbeat interrupt enable
IEFF Event FIFO full interrupt enable
IEVIO Receiver violation interrupt enable

2.14. Event Receiver Registermap 359

EPICS Documentation Sandbox

2.14.6 Hardware Interrupt Mapping Register

ad-
dress

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x013 MapID
[7]

MapID
[6]

MapID
[5]

MapID
[4]

MapID
[3]

MapID
[2]

MapID
[1]

MapID
[0]

Table: mapping IDs

Mapping ID Signal
0 to n-1 Pulse generator output (number n of pulse generators depends on HW and firmware version)
n to 31 (Reserved)
32 Distributed bus bit 0 (DBUS0)
.
39 Distributed bus bit 7 (DBUS7)
40 Prescaler 0
41 Prescaler 1
42 Prescaler 2
43 to 47 (Reserved)
48 Flip-flop output 0
.
55 Flip-flop output 7
56 to 58 (Reserved)
59 Event clock output (only on PXIe-EVR-300)
60 Event clock output with 180° phase shift (only on PXIe-EVR-300)
61 Tri-state output (for PCIe-EVR-300DC with input module populated in IFB-300’s Universal I/O

slot)
62 Force output high (logic 1)
63 Force output low (logic 0)

Flip-flop Outputs (from FW version 0E0207)

There are 8 flip-flop outputs. Each of these is using two pulse generators, one for setting the output high and the other
one for resetting the output low. In the table below you can see the relationship between flip-flops and pulse generators
and the output mapping IDs.

flip-flop Mapping ID Set Reset
0 48 Pulse gen. 0 Pulse gen. 1
1 49 Pulse gen. 2 Pulse gen. 3
2 50 Pulse gen. 4 Pulse gen. 5
3 51 Pulse gen. 6 Pulse gen. 7
4 52 Pulse gen. 8 Pulse gen. 9
5 53 Pulse gen. 10 Pulse gen. 11
6 54 Pulse gen. 12 Pulse gen. 13
7 55 Pulse gen. 14 Pulse gen. 15

360 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

2.14.7 Software Event Register

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x01A SWPEND SWENA

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x01B EVC[7] EVC[6] EVC[5] EVC[4] EVC[3] EVC[2] EVC[1] EVC[0]

Bit Function
SWPEND Event code waiting to be inserted (read-only). A new event code may be written

to the event code register when this bit reads ‘0’.

SWENA Enable software event
When enabled ‘1’ a new event will be inserted into the receive event stream

when event code is written to the event code register.

EVC[7:0] Event Code to be inserted into receive event stream

2.14.8 PCI Interrupt Enable Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x01c PCIIE

Bit Function
PCIIE PCI core interrupt enable (PCIe-EVR-300DC, mTCA-EVR-300)

This bit is used by the low level driver to disable further interrupts before the first interrupt has been handled in user
space

2.14.9 Receive Data Buffer Control and Status Register

ad-
dress

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x022 DBRX/DBENADBRDY/DBDISDBCS DBEN RX-
SIZE[11]

RX-
SIZE[10]

RX-
SIZE[9]

RX-
SIZE[8]

ad-
dress

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x023 RXSIZE[7] RXSIZE[6] RX-
SIZE[5]

RX-
SIZE[4]

RX-
SIZE[3]

RX-
SIZE[2]

RX-
SIZE[1]

RX-
SIZE[0]

2.14. Event Receiver Registermap 361

EPICS Documentation Sandbox

Bit Function
DBRX Data Buffer Receiving (read-only)
DBENA Set-up for Single Reception (write ‘1’ to set-up)
DBRDY Data Buffer Transmit Complete / Interrupt Flag
DBDIS Stop Reception (write ‘1’ to stop/disable)
DBCS Data Buffer Checksum Error (read-only)

Flag is cleared by writing ‘1’ to DBRX or DBRDY or disabling data buffer

DBEN Data Buffer Enable Data Buffer Mode
‘0’ – Distributed bus not shared with data transmission, full speed distributed bus

‘1’ – Distributed bus shared with data transmission, half speed distributed bus

RXSIZE Data Buffer Received Buffer Size (read-only).

Transmit Data Buffer Control Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x024

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x025 TXCPT TXRUN TRIG ENA 1

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x026 DTSZ[10] DTSZ[9] DTSZ[8]

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x027 DTSZ[7] DTSZ[6] DTSZ[5] DTSZ[4] DTSZ[3] DTSZ[2] 0 0

Bit Function
TXCPT Data Buffer Transmission Complete
TXRUN Data Buffer Transmission Running – set when data transmission has been triggered and has not been

completed yet
TRIG Data Buffer Trigger Transmission

Write ‘1’ to start transmission of data in buffer

ENA Data Buffer Transmission enable
‘0’ – data transmission engine disabled

‘1’ – data transmission engine enabled

DTSZ(10:2) Data Transfer size 4 bytes to 2k in four byte increments

362 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Transmit Segemented Data Buffer Control Register

ad-
dress

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x028 SADDR[7] SADDR[6] SADDR[5] SADDR[4] SADDR[3] SADDR[2] SADDR[1] SADDR[0]
address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x029 TXCPT TXRUN TRIG ENA MODE

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x02A DTSZ[10] DTSZ[9] DTSZ[8]

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x02B DTSZ[7] DTSZ[6] DTSZ[5] DTSZ[4] DTSZ[3] DTSZ[2] 0 0

Bit Function
SADDR Transfer Start Segment Address (16 byte segments)
TXCPT Data Buffer Transmission Complete
TXRUN Data Buffer Transmission Running – set when data transmission has been triggered and has not been

completed yet
TRIG ata Buffer Trigger Transmission

Write ‘1’ to start transmission of data in buffer

ENA Data Buffer Transmission enable
‘0’ – data transmission engine disabled

‘1’ – data transmission engine enabled

MODE Distributed bus sharing mode
‘0’ – distributed bus not shared with data transmission

‘1’ – distributed bus shared with data transmission

DTSZ(10:2) Data Transfer size 4 bytes to 2k in four byte increments

2.14.10 FPGA Firmware Version Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x02C EVR = 0x1 FF[3] FF[2] FF[1] FF[0]

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x02D SID[7] SID[6] SID[5] SID[4] SID[3] SID[2] SID[1] SID[0]
address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x02E FID[7] FID[6] FID[5] FID[4] FID[3] FID[2] FID[1] FID[0]
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x02F RID[7] RID[6] RID[5] RID[4] RID[3] RID[2] RID[1] RID[0]

2.14. Event Receiver Registermap 363

EPICS Documentation Sandbox

Bit Function
Form Factor FF(3:0) 0 – CompactPCI 3U

1 – PMC

2 – VME64x

3 – CompactRIO

4 – CompactPCI 6U

6 – PXIe

7 – PCIe

8 – mTCA.4

Subrelease ID SID(7:0) For production releases the subrelease ID counts up from 00.
For pre-releases this ID is used “backwards” counting down from ff i.e. when

approaching release 12000207, we have prereleases 12FF0206, 12FE0206,

12FD0206 etc. in this order.

Firmware ID FID(7:0)

00 – Modular Register Map firmware (no delay compensation)

01 – Reserved

02 – Delay Compensation firmware

Revision ID RID(7:0) See end of manual

2.14.11 Clock Control Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x050 PLL-

LOCK
BWSEL[2] BWSEL[1] BWSEL[0] CLKMD[1] CLKMD[0]

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x052 CGLOCK

364 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Bit Function
PLL-
LOCK

Clock cleaner PLL Locked (read-only) to receiver recovered clock

BWSEL2:0 PLL Bandwidth Select (see Silicon Labs Si5317 datasheet)
000 – Si5317, BW setting HM (lowest loop bandwidth)

001 – Si5317, BW setting HL

010 – Si5317, BW setting MH

011 – Si5317, BW setting MM

100 – Si5317, BW setting ML (highest loop bandwidth)

CLKMD1:0 Event clock mode
00 – Event clock synchronized to upstream EVG. Event clock continues to run with same frequency
if link is lost.
01 – Event clock synchronized to local fractional synthesizer reference.

10 – Event clock synchronized to upstream EVG. Fall back to local reference if upstream link is lost.

11 – Event clock synchronized to upstream EVG. Event clock is stopped if link is lost.

CGLOCK Micrel fractional synthesizer SY87739L locked (read-only). This serves as the
reference clock for the FPGA internal transceiver and indicates that a valid

configuration word has been set in the FracDiv control register.

Event FIFO

Note that reading the FIFO event code registers pulls the event code and timestamp/seconds value from the FIFO
for access. The correct order to read an event from FIFO is to first read the event code register and after this the
timestamp/seconds registers in any order. Every read access to the FIFO event register pulls a new event from the FIFO
if it is not empty.

SY87739L Fractional Divider Configuration Word

The fractional synthesizer serves as the reference clock for the FPGA internal transceiver.

2.14. Event Receiver Registermap 365

EPICS Documentation Sandbox

Configuration Word Frequency with 24 MHz reference oscillator
0x0891C100 142.857 MHz
0x00DE816D 125 MHz
0x00FE816D 124.95 MHz
0x0C928166 124.9087 MHz
0x018741AD 119 MHz
0x072F01AD 114.24 MHz
0x049E81AD 106.25 MHz
0x008201AD 100 MHz
0x025B41ED 99.956 MHz
0x0187422D 89.25 MHz
0x0082822D 81 MHz
0x0106822D 80 MHz
0x019E822D 78.900 MHz
0x018742AD 71.4 MHz
0x0C9282A6 62.454 MHz
0x009743AD 50 MHz
0x0C25B43AD 49.978 MHz
0x0176C36D 49.965 MHz

2.14.12 SPI Configuration Flash Registers

ad-
dress

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x0A3 SPI-
DATA[7]

SPI-
DATA[6]

SPI-
DATA[5]

SPI-
DATA[4]

SPI-
DATA[3]

SPI-
DATA[2]

SPI-
DATA[1]

SPI-
DATA[0]

ad-
dress

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x0A7 E RRDY TRDY TMT TOE ROE OE SSO

Bit Function
SPIDATA(7:0) Read SPI data byte / Write SPI data byte
E Overrun Error flag
RRDY Receiver ready, if ‘1’ data byte waiting in SPI_DATA
TRDY Transmitter ready, if ‘1’ SPI_DATA is ready to accept new transmit data byte
TMT Transmitter empty, if ‘1’ data byte has been transmitted
TOE Transmitter overrun error
ROE Receiver overrun error
OE Output enable for SPI pins, ‘1’ enable SPI pins
SSO Slave select output enable for SPI slave device, ‘1’ device selected

366 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

2.14.13 Delay Compensation Status Register

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x0BE PDVLD[2] PDVLD[1] PDVLD[0]

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x0BF DLYL DLYS DCLOCK

Bit Function
PDVLD(2:0) Path delay valid

000 – Path delay value not valid from master EVM to EVR

001 – Path delay value valid (coarse/quick acquisition)

011 – Path delay value valid (medium precision/slow acquisition)

111 – Path delay value valid (fine precision/slow acquisition)

DLYL Delay setting too long (delay shorter than target)
DLYS Delay setting too short (delay longer than target)
DCLOCK Delay fifo locked to setting/delay value

2.14.14 Sequence RAM Control Register

ad-
dress

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x0E0 SQRUN SQENA

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x0E1 SQSWT SQSNG SQREC SQRES SQDIS SQEN

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x0E3 SQT-

SEL[7]
SQT-
SEL[6]

SQT-
SEL[5]

SQT-
SEL[4]

SQT-
SEL[3]

SQT-
SEL[2]

SQT-
SEL[1]

SQT-
SEL[0]

2.14. Event Receiver Registermap 367

EPICS Documentation Sandbox

Bit Function
SQRUN Sequence RAM running flag (read-only)
SQENA Sequence RAM enabled flag (read_only)
SQSWT Sequence RAM software trigger, write ‘1’ to trigger
SQSNG Sequence RAM single mode
SQREC Sequence RAM recycle mode
SQRES Sequence RAM reset, write ‘1’ to reset
SQDIS Sequence RAM disable, write ‘1’ to disable
SQEN Sequence RAM enable, write ‘1’ to enable/arm
SQTSEL 0 to n-1 – Pulse generator output

n to 31 – (Reserved)

32 to 39 – Distributed bus bit 0 (DBUS0) to bit 7 (DBUS7)

40 to 47 – Prescaler 0 to Prescaler 7

48 to 58 – (Reserved)

61 – Software trigger

62 – Continuous trigger

63 – Trigger disabled

2.14.15 Prescaler Pulse Trigger Registers

Each bit in the Prescaler Pulse Trigger Register corresponds to one pulse generator trigger. If for instance bit 0 is set,
pulse generator 0 gets trigger on each 0 to 1 transition of the corresponding prescaler.

2.14.16 Distributed Bus Pulse Trigger Registers

Each bit in the Distributed Bus Pulse Trigger Register corresponds to one pulse generator trigger. If for instance bit 0
is set, pulse generator 0 gets trigger on each 0 to 1 transition of the corresponding distributed bus bit.

2.14.17 Pulse Generator Registers

ad-
dress

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x200 Px-
MASK[7]

Px-
MASK[6]

Px-
MASK[5]

Px-
MASK[4]

Px-
MASK[3]

Px-
MASK[2]

Px-
MASK[1]

Px-
MASK[0]

ad-
dress

bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x201 Px-
ENA[7]

Px-
ENA[6]

Px-
ENA[5]

Px-
ENA[4]

Px-
ENA[3]

Px-
ENA[2]

Px-
ENA[1]

Px-
ENA[0]

ad-
dress

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x203 PxOUT PxSWS PxSWR PxPOL PxMRE PxMSE PxMTE PxENA

368 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

address bit 31. . . bit 0
0x204 Pulse Generator 0 Prescaler Register
address bit 31. . . bit 0
0x208 Pulse Generator 0 Delay Register
address bit 31. . . bit 0
0x20C Pulse Generator 0 Width Register

Bit Function
PxMASK(7:0) Pulse HW Mask Register

0 – HW masking disabled

1 – HW masking enabled. When corresponding gate bit is active ‘1’ pulse triggers are blocked

PxENA(7:0) Pulse HW Enable Register
0 – HW enabling inactive

1 – HW enabling active. When corresponding gate bit is inactive ‘0’ pulse triggers are blocked

PxOUT Pulse Generator Output (read-only)
PxSWS Pulse Generator Software Set
PxSWC Pulse Generator Software Reset
PxPOL Pulse Generator Output Polarity

0 – normal polarity

1 – inverted polarity

PxMRE Pulse Generator Event Mapping RAM Reset Event Enable
0 – Reset events disabled

1 – Mapped Reset Events reset pulse generator output

PxMSE Pulse Generator Event Mapping RAM Set Event Enable
0 – Set events disabled

1 – Mapped Set Events set pulse generator output

PxMTE Pulse Generator Event Mapping RAM Trigger Event Enable
0 – Event Triggers disabled

1 – Mapped Trigger Events trigger pulse generator

PxENA Pulse Generator Enable
0 – generator disabled

1 – generator enabled

2.14. Event Receiver Registermap 369

EPICS Documentation Sandbox

2.14.18 Input Mapping Registers

The same bit mapping applies to Front Panel Inputs, Universal Inputs and Backplane Inputs.

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x500 FPIN0 EXTLV0 BCKLE0 EXTLE0 EXTED0 BCKEV0 EXTEV0

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x501 T0DB7 T0DB6 T0DB5 T0DB4 T0DB3 T0DB2 T0DB1 T0DB0

address bit 15 . . . bit 8
0x502 Backward Event Code Register for front panel input 0
address bit 7 . . . bit 0
0x503 External Event Code Register for front panel input 0

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x504 FPIN1 EXTLV1 BCKLE1 EXTLE1 EXTED1 BCKEV1 EXTEV1

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x505 T1DB7 T1DB6 T1DB5 T1DB4 T1DB3 T1DB2 T1DB1 T1DB0

address bit 15 . . . bit 8
0x506 Backward Event Code Register for front panel input 1
address bit 7 . . . bit 0
0x507 External Event Code Register for front panel input 1

370 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Bit Function
FPINx Front panel Input x state.

0 – low

1 – high

EXTLVx Backward HW Event Level Sensitivity for input x
0 – active high

1 – active low

BCKLEx Backward HW Event Level Trigger enable for input x
0 – disable level events

1 – enable level events, send out backward event code every 1 us when input is

active (see EXTLVx for level sensitivity)

EXTLEx External HW Event Level Trigger enable for input x
0 – disable level events

1 – enable level events, apply external event code to active mapping RAM

every 1 us when input is active (see EXTLVx for level sensitivity)

EXTEDx Backward HW Event Edge Sensitivity for input x
0 – trigger on rising edge

1 – trigger on falling edge

BCKEVx Backward HW Event Edge Trigger Enable for input x
0 – disable backward HW event

1 – enable backward HW event, send out backward event code on detected

edge of hardware input (see EXTEDx bit for edge)

EXTEVx External HW Event Enable for input x
0 – disable external HW event

1 – enable external HW event, apply external event code to active mapping

RAM on edge of hardware input

TxDB7-TxDB0 Backward distributed bus bit enable:
0 – disable distributed bus bit

1 – enable distributed bus bit control from hardware input: e.g. when TxDB7

is ‘1’ the hardware input x state is sent out on distributed bus bit 7.

2.14. Event Receiver Registermap 371

EPICS Documentation Sandbox

address bit 31. . . bit 16
0x610 Frequency mode trigger position

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x612 GTX3MD GTX2MD GTXPH1 GTXPH0

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x613 CMLRC CMLTL CMLMD(1:0) CMLRES CMLPWD CMLENA

372 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Bit Function
GTX3MD GUN-TX-300 Mode (cPCI-EVRTG-300 only)

0 – CML/GTX Mode

1 – SFP output in GUN-TX-300 Mode

GTX2MD GUN-TX-203 Mode (cPCI-EVRTG-300 only)
0 – CML/GTX Mode

1 – SFP output in GUN-TX-203 Mode

GTXPH1:0 GUN-TX-203 Trigger output phase shift (cPCI-EVRTG-300 only)
00 – no delay

01 – output pulse delayed by ¼ event clock period (2 ns)

10 – output pulse delayed by ½ event clock period (4 ns)

11 – output pulse delayed by ¾ event clock period (6 ns)

CMLRC CML Pattern recycle
CMLTL CML Frequency mode trigger level
CMLMD CML Mode Select:

00 = classic mode

01 = frequency mode

10 = pattern mode

11 = undefined

CMLRES CML Reset
1 = reset CML output (default on EVR power up)

0 = normal operation

CMLPWD CML Power Down
1 = CML outputs powered down (default on EVR power up)

0 = normal operation

CMLENA CML Enable
0 = CML output disabled (default on EVR power up)

1 = CML output enabled

2.14. Event Receiver Registermap 373

EPICS Documentation Sandbox

2.14.19 Data Buffer Segment Interrupt Enable Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x8F80 DBIE00 DBIE01 DBIE02 DBIE03 DBIE04 DBIE05 DBIE06 DBIE07
address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x8F81 DBIE08 DBIE09 DBIE0A DBIE0B DBIE0C DBIE0D DBIE0E DBIE0F
. . .

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x8F8E DBIE70 DBIE71 DBIE72 DBIE73 DBIE74 DBIE75 DBIE76 DBIE77
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x8F8F DBIE78 DBIE79 DBIE7A DBIE7B DBIE7C DBIE7D DBIE7E DBIE7F

Bit Function
DBIExx Data Buffer Segment (16-byte segments) Interrupt Enable:

0 – Interrupt for segment disabled

1 – Interrupt for segment enabled

An interrupt will occur when the segment’s receive flag is active. To enable

Data Buffer interrupts the IEDBUF bit in the Interrupt Enable Register has to be set.

2.14.20 Data Buffer Checksum Flag Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x8FA0 DBCS00 DBCS01 DBCS02 DBCS03 DBCS04 DBCS05 DBCS06 DBCS07
address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x8FA1 DBCS08 DBCS09 DBCS0A DBCS0B DBCS0C DBCS0D DBCS0E DBCS0F
address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x8FAE DBCS70 DBCS71 DBCS72 DBCS73 DBCS74 DBCS75 DBCS76 DBCS77
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x8FAF DBCS78 DBCS79 DBCS7A DBCS7B DBCS7C DBCS7D DBCS7E DBCS7F

Bit Function
DBCSxx Data Buffer Segment (16-byte segments) Checksum Flag:

0 – Checksum OK

1 – Checksum error

This flag is cleared by writing a ‘1’ into the segment’s DBRXxx bit in the DataBufRxFlag register.

374 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Data Buffer Overflow Flag Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x8FC0 DBOV00 DBOV01 DBOV02 DBOV03 DBOV04 DBOV05 DBOV06 DBOV07
address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x8FC1 DBOV08 DBOV09 DBOV0A DBOV0B DBOV0C DBOV0D DBOV0E DBOV0F
. . .

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x8FCE DBOV70 DBOV71 DBOV72 DBOV73 DBOV74 DBOV75 DBOV76 DBOV77
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x8FCF DBOV78 DBOV79 DBOV7A DBOV7B DBOV7C DBOV7D DBOV7E DBOV7F

Bit Function
DBOVxx Data Buffer Segment (16-byte segments) Overflow Flag:

0 – No overflow condition

1 – Overflow: a new packet has been received before the DBRX flag for this segment was cleared

This flag is cleared by writing a ‘1’ into the segment’s DBRXxx bit in the DataBufRxFlag register.

2.14.21 Data Buffer Receive Flag Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x8FE0 DBRX00 DBRX01 DBRX02 DBRX03 DBRX04 DBRX05 DBRX06 DBRX07
address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x8FE1 DBRX08 DBRX09 DBRX0A DBRX0B DBRX0C DBRX0D DBRX0E DBRX0F
address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x8FEE DBRX70 DBRX71 DBRX72 DBRX73 DBRX74 DBRX75 DBRX76 DBRX77
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x8FEF DBRX78 DBRX79 DBRX7A DBRX7B DBRX7C DBRX7D DBRX7E DBRX7F

Bit Function
DBRXxx Data Buffer Segment (16-byte segments) Receive Flag:

0 – No packet received

1 – Data packet received in this segment

This flag is cleared by writing a ‘1’ into the segment’s DBRXxx bit.

2.14. Event Receiver Registermap 375

EPICS Documentation Sandbox

2.14.22 SFP Module EEPROM and Diagnostics

Small Form Factor Pluggable (SFP) transceiver modules provide a means to identify the module by accessing an EEP-
ROM. As an advanced feature some modules also support reading dynamic information including module temperature,
receive and transmit power levels etc. from the module. The EVR gives access to all of this information through a mem-
ory window of 2 × 256 bytes. The first 256 bytes consist of the EEPROM values and the rest of the advanced values.

BASE ID FIELDS

Byte # Field
size

Notes Value

0 1 Type of serial transceiver 0x03 = SFP transceiver
1 1 Extended identifier of type serial transceiver 0x04 = serial ID module defini-

tion
2 1 Code for connector type 0x07 = LC

3 – 10 8 Code for electronic compatibility or optical compatibil-
ity

11 1 Code for serial encoding algorithm

12 1 Nominal bit rate, units of 100 MBits/sec

13 1 Reserved

14 1 Link length supported for 9/125 m fiber, units of km

15 1 Link length supported for 9/125 m fiber, units of 100 m

16 1 Link length supported for 50/125 m fiber, units of 10 m

17 1 Link length supported for 62.5/125 m fiber, units of 10
m

18 1 Link length supported for copper, units of meters

19 1 Reserved

20 – 35 16 SFP transceiver vendor name (ASCII)

36 1 Reserved

37 – 39 3 SFP transceiver vendor IEEE company ID

40 – 55 16 Part number provided by SFP transceiver vendor
(ASCII)

56 – 59 4 Revision level for part number provided by vendor
(ASCII)

60 – 62 3 Reserved

63 1 Check code for Base ID Fields

EXTENDED ID FIELDS

376 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Byte # Field size Notes Value
64 – 65 2 Indicated which optional SFP signals are implemented

66 1 Upper bit rate margin, units of %

67 1 Lower bit rate margin, units of %

68 – 83 16 Serial number provided by vendor (ASCII)

84 – 91 8 Vendor’s manufacturing date code

92 – 94 3 Reserved

95 1 Check code for the Extended ID Fields

VENDOR SPECIFIC ID FIELDS

Byte # Field size Notes Value
96 – 127 32 Vendor specific data

128 – 255 Reserved

ENHANCED FEATURE SET MEMORY

Byte # Field size Notes Value
256 – 257 2 Temp H Alarm Signed twos complement integer in increments of 1/256 °C
258 – 259 2 Temp L Alarm Signed twos complement integer in increments of 1/256 °C
260 – 261 2 Temp H Warning Signed twos complement integer in increments of 1/256 °C
262 – 263 2 Temp L Warning Signed twos complement integer in increments of 1/256 °C
264 – 265 2 VCC H Alarm Supply voltage decoded as unsigned integer in increments of 100 V
266 – 267 2 VCC L Alarm Supply voltage decoded as unsigned integer in increments of 100 V
268 – 269 2 VCC H Warning Supply voltage decoded as unsigned integer in increments of 100 V
270 – 271 2 VCC L Warning Supply voltage decoded as unsigned integer in increments of 100 V
272 – 273 2 Tx Bias H Alarm Laser bias current decoded as unsigned integer in increment of 2 A
274 – 275 2 Tx Bias L Alarm Laser bias current decoded as unsigned integer in increment of 2 A
276 – 277 2 Tx Bias H Warning Laser bias current decoded as unsigned integer in increment of 2 A
278 – 279 2 Tx Bias L Warning Laser bias current decoded as unsigned integer in increment of 2 A
280 – 281 2 Tx Power H Alarm Transmitter average optical power decoded as unsigned integer in increments of 0.1 W
282 – 283 2 Tx Power L Alarm Transmitter average optical power decoded as unsigned integer in increments of 0.1 W
284 – 285 2 Tx Power H Warning Transmitter average optical power decoded as unsigned integer in increments of 0.1 W
286 – 287 2 Tx Power L Warning Transmitter average optical power decoded as unsigned integer in increments of 0.1 W
288 – 289 2 Rx Power H Alarm Receiver average optical power decoded as unsigned integer in increments of 0.1 W
290 – 291 2 Rx Power L Alarm Receiver average optical power decoded as unsigned integer in increments of 0.1 W
292 – 293 2 Rx Power H Warning Receiver average optical power decoded as unsigned integer in increments of 0.1 W
294 – 295 2 Rx Power L Warning Receiver average optical power decoded as unsigned integer in increments of 0.1 W
296 – 311 16 Reserved
312 – 350 External Calibration Constants
351 1 Checksum for Bytes 256 – 350

continues on next page

2.14. Event Receiver Registermap 377

EPICS Documentation Sandbox

Table 13 – continued from previous page
Byte # Field size Notes Value
352 – 353 2 Real Time Temperature Signed twos complement integer in increments of 1/256 °C
354 – 355 2 Real Time VCC Power SupplyVoltage Supply voltage decoded as unsigned integer in increments of 100 V
356 – 357 2 Real Time Tx Bias Current Laser bias current decoded as unsigned integer in increment of 2 A
358 – 359 2 Real Time Tx Power Transmitter average optical power decoded as unsigned integer in in- crements of 0.1 W
360 – 361 2 Real Time Rx Power Receiver average optical power decoded as unsigned integer in increments of 0.1 W
362 – 365 4 Reserved
366 1 Status/Control bit 7: TX_DISABLE State

bit 6 – 3: Reserved
bit 2: TX_FAULT State
bit 1: RX_LOS State
bit 0: Data Ready (Bar)

367 1 Reserved
368 1 Alarm Flags bit 7: Temp High Alarm

bit 6: Temp Low Alarm
bit 5: VCC High Alarm
bit 4: VCC Low Alarm
bit 3: Tx Bias High Alarm
bit 2: Tx Bias Low Alarm
bit 1: Tx Power High Alarm
bit 0: Tx Power Low Alarm

369 1 Alarm Flags cont. bit 7: Rx Power High Alarm
bit 6: Rx Power Low Alarm
bit 5 – 0: Reserved

370 – 371 2 Reserved
372 1 Warning Flags bit 7: Temp High Warning

bit 6: Temp Low Warning
bit 5: VCC High Warning
bit 4: VCC Low Warning
bit 3: Tx Bias High Warning
bit 2: Tx Bias Low Warning
bit 1: Tx Power High Warning
bit 0: Tx Power Low Warning

373 1 Warning Flags cont. bit 7: Rx Power High Warning
bit 6: Rx Power Low Warning
bit 5 – 0: Reserved

374 – 511 Reserved/Vendor Specific

378 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

2.14.23 Hardware Configuration Summary

VME-EVR-300 mTCA-EVR-300 PCIe-EVR-300DC

Pulse Generators 24 16 16
FP TTL inputs 2 2 0
FP TTL outputs 0 4 0
FP GTX outputs 41 0 0
FP UNIV I/O / slots 4 0 16 / 82

FP UNIV GPIO pins / slots 16/4 0 / 0 0 / 0

TB Outputs 16 32 0
TB Inputs 16 32 0
Prescalers 8 x 32 bit 8 x 32 bit 8 x 32 bit

Pulse Generator: Prescaler, Delay, Pulse Width Range (bits)

VME-EVR-300 mTCA-EVR-300 PCIe-EVR-300DC

0 16, 32, 32 16, 32, 32 16, 32, 32
1 16, 32, 32 16, 32, 32 16, 32, 32
2 16, 32, 32 16, 32, 32 16, 32, 32
3 16, 32, 32 16, 32, 32 16, 32, 32
4 0, 32, 16 0, 32, 16 0, 32, 16
5 0, 32, 16 0, 32, 16 0, 32, 16
6 0, 32, 16 0, 32, 16 0, 32, 16
7 0, 32, 16 0, 32, 16 0, 32, 16
8 0, 32, 16 0, 32, 16 0, 32, 16
9 0, 32, 16 0, 32, 16 0, 32, 16
10 0, 32, 16 0, 32, 16 0, 32, 16
11 0, 32, 16 0, 32, 16 0, 32, 16
12 0, 32, 16 0, 32, 16 0, 32, 16
13 0, 32, 16 0, 32, 16 0, 32, 16
14 0, 32, 16 0, 32, 16 0, 32, 16
15 0, 32, 16 0, 32, 16 0, 32, 16

(^1) One Universal I/O slot (2 outputs), 2 x CML output (^2) Universal I/O is available on the external I/O box

2.14.24 PCIe-EVR-300DC and IFB-300 Connections

Due to its small bracket the PCIe-EVR-300DC has only a SFP transceiver and a micro-SCSI type con- nector to interface
to the IFB-300. The cable between the PCIe-EVR-300DC and IFB-300 should be connected/disconnected only when
powered down.

Connector / Led Style Level Description Link TX (SFP) LC Optical 850 nm Event link Transmit Green: TX enable
Red: Fract.syn. not locked Blue: Event out Link RX (SFP) Next to micro-SCSI

LC Optical 850 nm Event link Receiver Green: link up Red: link violation detected Blue: event led

The interface board IFB-300 has eight Universal I/O slots which can be populated with various types of Universal I/O
modules. If an input module is populated in any slot a jumper has to be mounted in that slot’s two pin header with

2.14. Event Receiver Registermap 379

EPICS Documentation Sandbox

marking “Insert jumper for input module”. Please note that if an input module is mounted the corresponding Universal
Output Mapping has to be tri-stated. Refer to Table 1: Signal mapping IDs for details.

Universal Slot 0/1 signals are hard-wired to the TTLIN 0/1 signals.

Figure 22: IFB-300 Front Panel

Connector / Led Style Level Description UNIV0/1 Universal slot TTL Input / Universal I/O 0/1 UNIV2/3 Universal
slot Universal I/O 2/3 UNIV4/5 Universal slot Universal I/O 4/5 UNIV6/7 Universal slot Universal I/O 6/7 UNIV8/9
Universal slot Universal I/O 8/9 UNIV10/11 Universal slot Universal I/O 10/11 UNIV12/13 Universal slot Universal
I/O 12/13 UNIV14/15 Universal slot Universal I/O 14/15 LINK Green led RX link up EVIN Yellow led RX event in
EVOUT Yellow led RX event led (mapped) RXFAIL Red led RX violation detected

2.14.25 mTCA-EVR-300 Connections

Figure 23: mTCA-EVR-300 Front Panel

Connector / Led Style Level Description USB Micro-USB MMC diagnostics serial port / JTAG interface Link TX (SFP)
LC Optical 850 nm Event link Transmit Green: TX enable Red: Fract.syn. not locked Blue: Event out Link RX (SFP)
LC Optical 850 nm Event link Receiver Green: link up Red: link violation detected Blue: event led IFB VHDCI LVDS
IFB-300 Interface Box connection IN0 LEMO TTL FPTTL0 Trigger input IN1 LEMO TTL (3.3V / 5V) FPTTL1
Trigger input OUT0 LEMO 3.3V LVTTL TTL Front panel output 0 OUT1 LEMO 3.3V LVTTL TTL Front panel
output 1 OUT2 LEMO 3.3V LVTTL TTL Front panel output 2 OUT3 LEMO 3.3V LVTTL TTL Front panel output
3 TCLKA mTCA.4 LVDS TCLKA clock on backplane This signal is driven by CML/GTX logic block 0 Mapped
as Universal Output 16 TCLKB mTCA.4 LVDS TCLKB clock on backplane This signal is driven by CML/GTX
logic block 1 Mapped as Universal Output 17 RX17 mTCA.4 MLVDS Backplane output 0 TX17 mTCA.4 MLVDS
Backplane output 1 RX18 mTCA.4 MLVDS Backplane output 2 TX18 mTCA.4 MLVDS Backplane output 3 RX19
mTCA.4 MLVDS Backplane output 4 TX19 mTCA.4 MLVDS Backplane output 5 RX20 mTCA.4 MLVDS Backplane
output 6 TX20 mTCA.4 MLVDS Backplane output 7

2.14.26 PCIe-EVR-300DC Firmware Upgrade

The PCIe-EVR-300DC firmware image can be upgraded with the following command after loading the driver in Linux:

dd if=new_image.bit of=/dev/era1

A power cycle is required to load the new configuration image on the PCIe-EVR-300DC.

2.15 EVR Firmware Version Change Log

FW Version Date Changes Affected HW
0200 11.06.2015 - Prototype release VME-EVR-300
0201 24.09.2015 - Added segmented data buffer block status flags

- Changed delay compensation FIFO depth from 2k to 4k event cycles
- Added DCM modulation to improve jitter performance

0203 12.01.2016 - Delay compensation amendments, non-GTX outputs are compensated properly VME-EVR-300
0204 25.01.2016 - First release for PCIe-EVR-300DC all

- Fixed segmented data buffer flag writes
0204 03.02.2016 - Fixed initial values of GTX outputs VME-EVR-300

- GTX output aligment
0205 07.04.2016 - Changed PCIe-EVR-300DC class code to 0x118000. all

continues on next page

380 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Table 14 – continued from previous page
FW Version Date Changes Affected HW

- Moved delay compensation data from first segment to last segment.
- Fixed dual output mapping for transition board outputs.
- Added backplane signals to mTCA-EVR.
- Added delay compensation disabled mode to be able to use DC capable EVRs with pre-DC EVG and fan-outs.

0206 12.08.2016 - Relocated segmented data buffer to new address location. all
- Replaced earlier data buffer in its original position (maintaining compatibility with 230 series protocol).
- Changed segmented data buffer protocol to use K28.2 as a start symbol

0207 30.08.2016 - Added stand-alone capability: using its internal reference all
the EVR can now operate as a stand-alone pulse generator without event link.
- EVR can operate as a simple EVG by forwarding internal events
- Added software event capability
- Added one EVG type sequencer

030207 23.12.2016 - Changed beacon event code from 0x7a to 0x7e. all
- Added status bits for delay compensation path delay value validity.
- Added register for topology ID.

040207 09.1.2017 - Repaired “trigger allways” problem with triggering sequencer with pulse generator 19. all
- Added mapping 61 for sequencer software triggering.

050207 19.1.2017 - Fixed running on internal reference for VME-EVR-300.VME-EVR-300
060207 9.2.2017 - Added configurability to handling a lost event clock: VME-EVR-300

continue, stop, fallback to reference clock.
- Further fix to running on internal reference for VME-EVR-300.

070207 6.4.2017 - Fixed CML/GTX operation in stand-alone mode without receiver event stream. mTCA-EVR-300
- Fixed mapping of TCLKA/TCLKB backplane clocks on mTCA-EVR-300.

080207 7.8.2017 - PCIe AXI to OPB bridge fix for overloapping read/write PCIe-EVR-300DC
operation during block transfers.
- Added pullup to MODU_SDA and MODU_DEF0.

090207 27.2.2018 - Changes to get design built on Vivado 2017.4 All
0A0207 18.9.2018 - Changed number of external inputs to 16. PCIe-EVR-300DC
0D0207 20.5.2019 - Added programmable phase shift to prescalers. mTCA-EVR-300
0E0207 2.7.2019 - Fix to event FIFO. mTCA-EVR-300

- Added flip-flop outputs.

2.16 Epics device driver for MRF Event Generator (EVG)

::: author [Jayesh Shah, NSLS2, BNL jshah@bnl.gov] :::

\

::: date [Web version/RTD: January 21, 2024] [Last Updated: September 28, 2011] [Last Updated: Ju 28, 2011]

:::

2.16. Epics device driver for MRF Event Generator (EVG) 381

EPICS Documentation Sandbox

2.16.1 The Source

Source code for the mrfioc2 module, including the EVG support is available in the EPICS modules repository in Github.

VCS Checkout

$ git clone https://github.com/epics-modules/mrfioc2.git

Currently the driver supports the following models: (To be completed)

• VME-EVG-220

• VME-EVG-230

• cPCI-EVG-220

• cPCI-EVG-230

• PXI-EVG-220

• VME-EVM-300

• MTCA-EVM-300

The required software that this driver depends on:

• EPICS Base >= 3.14.10,

• devLib2 >= 2.8, and

• the MSI tool (included in Base >= 3.15.1).

2.16.2 IOC Deployment

This section outlines a general strategy for adding an EVG to an IOC.

VMEbus based hardware

The VME bus based EVGs are configured using the mrmEvgSetupVME() IOC shell function.

mrmEvgSetupVME (
const char* id, // EVG card ID
epicsInt32 slot, // VME slot
epicsUInt32 vmeAddress, // Desired VME address in A24 space
epicsInt32 irqLevel // IRQ Level
epicsInt32 irqVector, // Desired interrupt vector number
)

Example call:

mrmEvgSetupVME(EVG1,5,0x20000000,3,0x26)

In this example EVG1 is defined to be the VME card in slot 5 on VME crate. It is given the A32 base address of
0x20000000 and configured to interrupt on level 3 with vector 0x26.

You can look at example startup script(st.cmd file) for EVG in ./mrfioc2/iocBoot/iocevgmrm directory.

VME64x card configuration

382 Chapter 2. MRF Timing System Reference

https://epics-controls.org/resources-and-support/base/
https://github.com/epics-modules/devlib2/

EPICS Documentation Sandbox

VME64x allows for jumpless configuration of the card, but does not support automatic assignment of resources. Se-
lection of an unused address range and IRQ level/vector is left to the user.

Before setup is done the VME64 identifer fields are verified so that specifying an incorrect slot number is detected and
setup will safely abort.

PCI or PCIe based hardware

For PCI (or PCIe) - based EVG or EVM, use

mrmEvgSetupPCI (
const char* id, // Card Identifier
const char *spec, // ID spec. or Bus number
int d, // Device number
int f) // Function number

2.16.3 Classes/Sub-Components

EVG

Global EVG Options:

• Enable (bo/bi): EVG enable and disable.

2.16. Epics device driver for MRF Event Generator (EVG) 383

EPICS Documentation Sandbox

Event Clock

All the operations on EVG are synchronized to the event clock, which is derived from either externally provided RF
clock or from an on-board fractional synthesizer. Use of the on-board fractional synthesiser is mainly intended for
laboratory testing purposes.

The serial link bit rate is 20 times the event clock rate. The acceptable range for the event clock and bit rate is shown
in the following table.

Event Clock Bit Rate

Minimum 50 MHz 1.0 Gb/s
Maximum 142.8 MHz 2.9 Gb/s

see: evgMrmApp/Db/evgEvtClk.db

• Source (bo/bi): The event clock may be derived from external RF clock signal or from an on-board fractional
synthesizer.

• RF reference frequency (ao/ai) : Set the RF Input frequency in MHz. Frequency can range from 50 to 1600.

• RF Divider (longout/longin): Divider to derive desired event clock from RF reference frequency.

• Fractional Synthesizer frequency (ao/ai): This frequency could be used to derive event clock.

• Event Clock Frequency Readback (ai): Gets the current event clock frequency in MHz.

Timestamping

The Event System provides a global timebase to attach timestamps to all collected data and performed actions at EVR.
The time stamping system consists of 32-bit timestamp event counter and a 32-bit seconds counter.

This driver provides you an option of doing timestamping calculations in software as compared to the dedicated hard-
ware as used at few places.

Following are the EVR requirements for accurate timestamping:

• At the start of every second, receive the event code 0x7D which would load the 32-bit seconds count from shift
register into the seconds register of EVR and reset the timestamp event counter.

• Have the next 32-bit seconds count shifted in the shift register of EVR before the end of the current second. The
shift register is updated serially by loading zeros and ones on receipt of event code 0x70 and 0x71 respectively.

384 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Timestamping at EVG:

For timestamp EVG needs a pulse from the time source at the start of every second. EVG used this 1 pulse per second
input to address both requirements of EVR timestamping.

• The first requirement is addressed by using Trigger Events of EVG. We can configure one of the trigger events
to send out event code 0x7D when it receives a pulse from the 1PPS source.

• For addressing second requirement EVG uses software events. When timestamping starts the EVG driver obtains
the current time from epicsGeneralTime interface(which inturn is synced to a accurate time source) and stores it
locally. Now the driver uses the 1 pulse per second output from the time source to update the seconds count of
the locally stored time and then sends out next second using event codes 0x70 and 0x71 via software events.

Driver handles different error scenarios:

• EVG uses timer with 1PPS input signal. If it does not detect the signal in some ‘1 + delta’ second the timer goes
off and it raises an major alarm and timestamping stops. Once EVG receives the pulse from the 1PPS source
it starts the timer again and if the timer does not go off for 5 consecutive pulses then the EVG starts sending
timestamps again.

• Before sending out the timestamps to EVR (i.e. the 32-bit seconds count), EVG compares the [stored
time](updated by 1 PPS) with the [current time] (obtained from epicsGeneralTime). If they do not match an
minor alarm is raised but the stored time is sent as the current time to EVR.

Advantages:

• Using minimum number of EVG inputs for the timestamping purpose.

see: evgMrmApp/Db/evgMrm.db

Records associated with EVG time stamping:

• Synchronize Timestamp (bo): Sync the current time with the NTP server.

• 1PPS source for Timestamping:

– Timestamp Input (mbbo/mbbi):

∗ None : Stop timestamping

∗ Front : Front Panel Input

∗ Univ : Universal Input

∗ Rear : Rear Transitional Input

Software Events

Software event is used to send out an event by writing that event code to a particular register in EVG.

• Enable (bo/bi): Enable/Disable the transmission of Software Events.

• Event Code (longout/longin): Sends out the event code onto the event stream. Event code can range from 0 to
255.

2.16. Epics device driver for MRF Event Generator (EVG) 385

EPICS Documentation Sandbox

Trigger Events

see: evgMrmApp/Db/evgTrigEvt.db

Trigger events are used to send out event codes into the event stream every time an input trigger is received. The
stimulus can be a rising edge on an external input signal, a multiplexed counter output or the ac signal.

• Enable (bo/bi): Enable/Disable the transmission of Trigger Events.

• Event Code (longout/longin): Sets the event code to be sent out, whenever a trigger is received. Event Code can
range from 0 to 255.

• Trigger Source (mbbo): The trigger could come from one or multiple sources. It could come from any of
the external inputs and/or any multiplexed counter output and/or from ac signal. If multiple trigger sources are
selected then those signal are OR’ed together and the resulting signal works as the trigger.

Distributed bus

The distributed bus allows transmission of eight simultaneous signals with half of the event clock rate time resolution
(for example, 20 ns at 100 MHz event clock rate). The source for distributed bus signals may come from an external
source or the signals may be generated with programmable multiplexed counters (MXC) inside the event generator.

The distributed bus signals may be programmed to be available as hardware outputs on the event receiver.

• Signal Source/Map (mbbo): The bits of the distributed bus can be driven by selecting one of the following
sources.

– Ext Inp : Sampling of the external input signals at event rate.

– MXC : Sampling of the corresponding multiplexed counter output at event rate.

– Upstream EVG : Forwarding the state of distributed bus bit of upstream EVG.

• Selecting the input (bo): When the source for the distributed bus signals is external input signal, we need to
specify which input signal needs to be mapped onto the distributed bus. If multiple inputs are mapped onto a
single distributed bus bit then those signals are logically OR’ed together and the resulting signal is used to drive
the distributed bus bit.

Multiplexed Counter

There are 8 32-bit multiplexed counters that generate clock signals with programmable frequencies from event
clock/232-1 to event clock/2. The counter outputs may be programmed to trigger events, drive distributed bus sig-
nals and trigger sequence RAMs.

386 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

see evgMrmApp/Db/evgMxc.db

• Polarity (bo/bi): Set the Multiplex Counter(Mxc) output polarity.

• Frequency (ao/ai): Request a signal with a particular frequency.

• Prescaler (longout/longin): Used as counter to produce a signal with a particular frequency.

• Reset Reset all the multiplexed counters. After reset all the counters are in phase/sync with each other.

Prescaler value DutyCycle Frequency at 125MHz Event Clock
0,1 not allowed undefined undefined
2 50/50 62.5 MHz
3 33/66 41.7 MHz
4 50/50 31.25 MHz
5 40/60 25 MHz
.
2321 approx. 50/50 0.029 Hz

Input

VME-EVG-230 has 2 Front panel, 4 Universal and 16 Transitional Inputs.

• External Input Interrupt (bo): Enable or Disable the External Interrupt. When enabled, an interrupt is received
on every rising edge the input signal.

Output

It is used to configure the 4 front panel outputs and 4 four front panel universal outputs.

• Source(mbbo/mbbi): The output could be mapped to

– Any of the eight distributed bus bits

– Forced logic 1

– Forced logic 0.

2.16. Epics device driver for MRF Event Generator (EVG) 387

EPICS Documentation Sandbox

AC Trigger

EVG provides synchronization to the mains voltage frequency or another external clock.

see: evgMrmApp/Db/evgAcTrig.db

• Divider(longout/longin): The mains voltage frequency can be divided by an eight bit programmable divider.

• Phase(ao/ai): The output of the divider may be delayed by 0 to 25.5 ms by a phase shifter in 0.1ms steps to adjust
the triggering position relative to mains voltage phase.

• AC Bypass(bo/bi): It is set to bypass the AC divider and phase shifter circuitry.

• Sync (bo/bi): The AC Trigger could be synchronized either with event clock or the output of multiplexed counter
7.

Event Sequencer

Event Sequencer provides a method of transmitting or playing back sequences of events stored in random access mem-
ory with defined timing. The EVG has 2 sequence RAMs (sequencers or hard sequence). The sequencer can hold
up to 2048 <event code, mask, timeStamp> 3-item tuples. When the sequencer is triggered, an internal counter starts
counting. When the counter value matches the timeStamp of the next event, the attached event code is transmitted.
Starting with firmware version 0200 a mask field has been added. Bits in the mask field allow masking events from
being send out based on external signal input states or software mask bits.

see mrmShared/Db/mrmSoftSeq.template and evgMrmApp/Db/evgSoftSeq.template

388 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Functional block diagram of device support for event sequencer

Device support for sequencer introduces a concept of software sequence(a.k.a. soft sequence). The existence of the
software and hardware sequences is an abstraction made to separate the process of assembling a sequence from the
process of placing it into hardware. Software sequence maintains a complete ready to run copy of all sequences in the
IOC at all times. The IOC is then free to choose which sequence to place into hardware. Since this is a local operation
it can be done quickly and efficiently. The IOC can have any number of these soft sequences but at a time the number
of these soft sequences that can be loaded into the EVG hardware is restricted by the number of hardware sequences.

As shown in the picture above IOC maintains 2 copies of sequencer data (i.e. Event Code’s, Timestamps, Trigger
Source and Run Mode). Scratch sequence and complete sequence. Users are allowed to make changes to the scratch
sequence directly. Scratch sequence is like the working copy. When user are satisfied with the changes made to the
working copy then they can [‘commit’]the soft sequence which will update the complete sequence with the scratch
sequence. If the software sequence has an associated hardware sequence with it then the complete sequence is copied
to the hardware on commit. This is the Sync operation of sequencer.

Parts of the sequence:

• Event Code List(waveform): It is used to set the list of the eventCodes of the soft sequence. These eventCodes
are transmitted whenever the timeStamp associated with eventCode matches the counter value of sequencer.

• Timestamp List(waveform): It is used to set the timeStamps for the events in the soft sequence.

• Timestamp Input Mode(bo): There are two mode to enter the timestamping data in the sequencer i.e. EGU and
TICKS.

– EGU: In EGU mode user can enter the timestamps in units of seconds, milli-seconds, micro-seconds or
nano-seconds.

– TICKS: Here user can provide timestamps in terms of Event Clock ticks.

– All the timestamp values are offset from the time the sequencer receives the trigger.

• Timestamp Resolution(mbbo) : If the timestamp input mode is EGU user can use this record to give the units
to time.

2.16. Epics device driver for MRF Event Generator (EVG) 389

EPICS Documentation Sandbox

– Sec - Input/Output sequencer timestamps in seconds

– mSec - Input/Output sequencer timestamps in micro-seconds

– uSec - Input/Output sequencer timestamps in milli-seconds

– nSec - Input/Output sequencer timestamps in nano-seconds

• Run Mode(mbbo/mbbi): Run mode is used determine what will the sequencer do at the end of the sequence.
where mode could be any of the following:

– Single : Disarms the sequencer at the end of the sequence.

– Automatic : Restarts the sequence immediately after the end of the sequence.

– Normal : At the end of the sequence, the sequencer rearms and waits for the trigger to restart the sequence.

• Trigger Source(mbbo/mbbi): Trigger Src is used to select the source of the trigger, which starts the sequencer.

– Mxc : Trigger from MXC0 - MXC7

– AC : Trigger from AC sync logic

– Software : Trigger from RAM0/RAM1 software trigger.

– External : Trigger is received from any external input.

Above records only deal with the scratch copy of the soft sequence. They do not directly interact with the hardware
sequence.

A soft sequence could be in different states like LOADED or UNLOADED, COMMITTED or DIRTY, ENABLED or
DISABLED.

• Load(bo): If successful, load causes a soft sequence to move from UNLOADED state to LOADED state. In the
LOADED state, an hard sequence is assigned to a soft sequence. If the soft sequence is already in LOADED
state then load will return with an error message. The operation will fail if all the hard sequences are already
assigned. An allocation scheme ensures that at any given time, each hard sequence is connected to only one soft
sequence. Load also copies the last committed data to the hardware.

• Unload(bo): The unload causes the soft sequence to enter into UNLOADED state. This operation cannot fail.
In unloaded state the assignment of a hard sequence to a soft sequence is released.

• Commit(bo): Whenever you modify a soft sequence, the scratch copy in the soft sequence is modified (Refer
to evg-seq diagram). Commit causes the changes from the ‘scratch sequence’ to be copied to the ‘complete
sequence’. If the soft sequence is loaded, commit also initiates sync operation and copies the changes from
complete sequence to the hardware. Modifying the sequenceRam while it is running gives undefined behavior
hence ‘commit’ makes sure that the changes are not written to the hardware while it is running. Hence it waits
for the current sequence to finish before writing to the hardware sequence.

• Enable(bo): It puts the soft sequence in the ENABLED state. In enabled state, a loaded sequence is armed and
waits for the trigger. If is already in ENABLED state the record does nothing.

• Disable(bo): In DISABLED state the armed sequence is disarmed, so even if the sequencer receives the trigger
the sequence is does not run again.

• Pause(bo): This stops the currently running sequence(if any) and then disarms it. Pause leaves the sequence in
DISABLED state. When the sequence starts running again(Arm + Trigger), it continues the from where it was
stopped.

• Abort(bo): This causes the currently running sequence(if any) to stop and then disarmed. Abort leaves the
sequence in DISABLED state. After disarming it also resets the timestamp and eventCode registers. So when
the sequence starts running again(Arm + Trigger), it continues the from the start.

Caveats for sequencer

390 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

• In the Event Code and Timestamp arrays provided by user are of different lengths then the length of the sequence
would be the length of the smaller of the two arrays. The remaining extra elements of the longer array would be
ignored.

• Driver by defaults puts the ‘End of Sequence (0x7f)’ event code at the end of the sequence and it will be sent
‘evgEndOfSeqBuf’ event clock tick after the last event in the sequence has been sent out. Which currently defaults
to five event clock ticks. If user provides 0x7f with a timestamp then that would be used instead of the default
one.

• If a soft sequence is uncommitted and running then when the IOC restarts the sequence would be in uncommitted
state but wont be running i.e. last committed sequence is lost.

PyQt script. (Front end for Event Code and Timestamp arrays)

• You need to install PyQt4 to run this python script. Debian package is pyqt4-dev-tools.

• You can have timestamp as ‘zero’ for the first event code in the sequencer. So this will allow the first event code
in the sequencer to be sent out immediately after sequencer receives the trigger. But adding ‘zero’ as timestamp
anywhere else(other than for first event code) is an error and the sequence would be truncated as soon as a zero
is encountered. e.g. timestamp array: 0x20, 0x30, 0, 0x40 would be truncated to 0x20, 0x30. (Just first two
elements before zero.)

Acknowledgment

Thanks for all the help and support

• Michael Davidsaver, NSLS2, BNL.

• Eric Bjorklund, LANSCE, LANL.

2.16.4 EVG Device Support Reference

The following sections list the properties for all sub-units with functional descriptions.

Global Properties in this section apply to the EVG as a whole. See: evgMrmApp/Db/evgMrm.db

Enable Implemented for: bo DTYP: EVG Master enable for the EVG. If not set then very little will happen.

Event Clock See: evgMrmApp/Db/evgEvtClk.db

Clock Source Implemented for: bo DTYP: EVG Evt Clk Source Selects either the internal fractional synthesizer, or
the external clock input (RFIN).

RF Divider Implemented for: longout DTYP: EVG RF Divider Sets the programmable divider which converts the
external clock input (RFIN) to the Event clock frequency. Valid only for the external clock source.

RF Ref. Frequency Implemented for: ao DTYP: EVG Clk RFref When using the external clock input (RFIN). This
property must be set to the frequency being given to RFIN. The EVG is not able to measure this, so it must be provided
by the user. This number is used to convert Event clock ticks into real time (nanoseconds). An incorrect setting will
result in incorrect delays and periods being calculated.

Synth. Frequency Implemented for: ao DTYP: EVG Clk When using the internal fractional synthesizer this property
sets the Event clock frequency used. If the fractional synthesizer is not able to produce the requested frequency then it
will attempt to find a frequency as close as possible.

Event Clock Frequency Implemented for: ai DTYP: EVG Clk Current Event clock frequency. When using the external
clock this is a readback of the value of the RF Ref.

Frequency property.

2.16. Epics device driver for MRF Event Generator (EVG) 391

EPICS Documentation Sandbox

When using the internal fractional synthesizer this is a readback of the actual output frequency, which may be different
then what was requested with the Synth. Frequency.

9.3 AC Line Sync. The AC Line Sync unit is a trigger source which relates to the phase of its input. The trigger is
given on the closest tick of the syncroniszation source. Typically this is used to provide a trigger from the facility power
mains. See: evgMrmApp/Db/evgAcTrig.db

9.3.1 Divider Implemented for: longout DTYP: EVG AC Divider The mains voltage frequency can be divided by an
eight bit programmable divider.

9.3.2 Phase Implemented for: ao DTYP: EVG AC Phase The output of the divider may be delayed by 0 to 25.5 ms by
a phase shifter in 0.1ms steps to adjust the triggering position relative to mains voltage phase.

9.3.3 Bypass Implemented for: bo DTYP: EVG AC Bypass Bypass the AC divider and phase shifter circuitry. Equiv-
alent to setting divide by 1 and phase 0.

9.3.4 Synchronization Source Implemented for: bo DTYP: EVG AC Sync The AC Trigger could be synchronized either
with event clock or the output of multiplexed counter 7.

9.4 Software Event See: evgMrmApp/Db/evgSoftEvt.db Implemented for: longout DTYP: EVG Soft Evt When pro-
cessed immediately queues the code stored in the value field to be sent over the event link. Software events have the
lowest priority in the queue and will be sent in the next otherwise empty frame. Only one software event can be queued.
If there are more then one records then each will wait until it can queue its code, and will continue to wait until the
code is sent.

32

9.5 Event Triggers See: evgMrmApp/Db/evgSoftEvt.db

9.6 Inputs 9.7 Outputs 9.8 DBus Bits 9.9 Multiplexed Counters 9.10 Software Sequences 9.11 Data Buffer Tx See
section 8.10.2 on page 29.

2.17 EPICS device driver for MRF Event Receiver (EVR)

Event Receiver is a component of the MRF Timing system. Introduction to the MRF timing system can be found here.

Further details on the hardware implementation can be found on the same site, in particular about the Event Receiver.

More information on the Micro Research hardware can be found on their website http://www.mrf.fi/.

2.17.1 What is Available?

The software discussed below can be found on the ‘EPICS modules’ site on Github, in the ‘mrfioc2’ repository.

https://github.com/epics-modules/mrfioc2

2.17.2 Prerequisites

Build system required modules

EPICS Base (>= 3.14.10) : EPICS Core
https://epics-controls.org/resources-and-support/base/

MSI Macro expansion tool (required only for EPICS Base <3.15.0)
http://www.aps.anl.gov/epics/extensions/msi/index.php

392 Chapter 2. MRF Timing System Reference

http://www.mrf.fi/
https://github.com/epics-modules/mrfioc2
https://epics-controls.org/resources-and-support/base/
http://www.aps.anl.gov/epics/extensions/msi/index.php

EPICS Documentation Sandbox

devLib2 (>= 2.9): PCI/VME64x Hardware access library
https://github.com/epics-modules/devlib2/

Build system optional modules. Not required, but highly recommended.

autosave: Automatic save and restore on boot
https://github.com/epics-modules/autosave

iocstats : Runtime IOC statistics (CPU load, . . .)
https://github.com/epics-modules/iocStats
https://www.slac.stanford.edu/grp/ssrl/spear/epics/site/devIocStats/

Target operating system requirements

RTEMS: >= 4.9.x

vxWorks: >=6.7

Linux kernel: >= 3.2.1 (earlier versions may work)

Source

VCS Checkout

$ git clone https://github.com/epics-modules/mrfioc2.git

Edit ‘configure/CONFIG_SITE’ and ‘configure/RELEASE’ then run make.

Supported Hardware

The following devices are supported.

Name #FP1 # FP UNIV2 #FP Inputs3 RTM4

VME-EVR-2305 4 4 2 Yes
VME-EVR-230RF 76 2 2 Yes
PMC-EVR-230 3 0 1 No
CPCI-EVR-230 0 4 2 Yes7

cPCI-EVRTG-300 28 2 19 No
cPCI-EVR-300 0 12 2 No
PCIe-EVR-300DC 0 0 0 Yes13

mTCA-EVR-30010 4 4/0 2 Yes
VME-EVR-300 412 4 2 Yes

1 Front panel outputs (TTL)
2 Front panel universal output sockets
3 Front panel inputs
4 Supports Rear Transition Module
5 This device has not been tested
6 Outputs 4,5,6 are CML
7 Supports PCI side-by-side module
8 GTX outputs
9 Special GTX interlock

13 Extension “box”, connected with a cable.
10 Two hardware flavors exist, one with 2x UNIV I/O sockets, the other with an IFB-300 connector,
12 One Universal I/O slot, 2 x CML (GTX) outputs.

2.17. EPICS device driver for MRF Event Receiver (EVR) 393

https://github.com/epics-modules/devlib2/
https://github.com/epics-modules/autosave
https://github.com/epics-modules/iocStats
https://www.slac.stanford.edu/grp/ssrl/spear/epics/site/devIocStats/

EPICS Documentation Sandbox

2.17.3 Overview of the Driver

The purpose of this document is to act as a guide for using the ‘mrfioc2’ EPICS support module for the Micro Research
Finland (MRF) timing system11. It describes software for using the Event Receiver (EVR).

This document is an overview of the driver and its capabilities. It is not a fully up-to-date document with all details,
even if the contents are thought to be accurate. The intent of this document is to introduce the concepts and help
understanding how to use the driver. For studying the implementation, the important locations in the source tree
relating to the EVR are included.

The source repository contains a full API documentation, produced with Doxygen.

2.17.4 Receiver Functions

Internally an EVR can be thought of as a number of logical sub-units that connect the upstream and downstream event
links to the local inputs and outputs. These sub-units include: the Event Mapping Ram, Pulse Generators, Prescalers
(clock dividers), and the logical controls for the physical inputs and outputs.

Logical connections inside an EVR

Pulse Generators

Each pulse generator has a an associated Delay, Width, Polarity (active low/high), and (sometimes) a Prescaler (clock
divider). When triggered by the Mapping Ram it will wait for the Delay time in its inactive state. Then it will transition
to its active state, wait for the Width time before transitioning back to its inactive state.

Resolution of the delay and width is determined by the prescaler. A setting of 1 gives the best resolution.

In addition, the Mapping Ram can force a Pulse Generator into either state (Active/Inactive).
11 List of supported hardware given in section [Supported Hardware]](#supported-hardware).

394 Chapter 2. MRF Timing System Reference

https://epics-controls.org
https://en.wikipedia.org/wiki/Doxygen

EPICS Documentation Sandbox

Event Mapping Ram

The Event Mapping Ram is a table used to define the actions to be taken by an EVR when it receives a particular event
code number. The mapping it defines is a many-to-many relation; one event can cause several actions, and one action
can be caused by several events.

The actions which can be taken can be grouped into two categories: Special actions, and Pulse Generator actions.
Special actions include those related to timestamp distribution, and the system heartbeat tick (see Special Function
Mappings for a complete list). Each Pulse Generator has three mappable actions: Set (force active), Reset (force
inactive), and Trigger (start delay program). Most applications will use Trigger mappings.

Prescalers (Clock Divider)

Prescaler sub-units take the EVR’s local oscillator and output a lower frequency clock which is phased locked to the
local clock, which is in sync with the global master clock. The lower frequency must be an integer divisor of the Event
clock.

To provide known phase relationships, all dividers can be synchronously reset when a mapped event code is received.
This is the Reset PS action. See Special Function Mappings.

Outputs (TTL)

This sub-unit represents a physical output on the EVR. Each output may be connected to one source: a Distributed Bus
bit, a Prescaler, or a Pulse Generator (see Function Mapping for a complete list).

Outputs (CML and GTX)

Current Mode Logic outputs can send a bit pattern at the bit rate of the event link bit clock (20x the Event Clock). This
pattern may be specified in one of three possible ways:

• As four 20 bit sub-patterns (rising, high, falling, and low).

• As two periods (high and low). These specify a square wave with variable frequency and duty factor.

• As an arbitrary bit pattern (<= 40940 bits) which begins when the output goes [TODO: high or low?].

In the sub-pattern mode, the rising and falling edge patterns are transmitted when the output level changes, while the
high and low patterns are repeated in between level changes.

The GTX outputs that are found only on selected models like VME-EVR-300, function similarly to the CML outputs,
however at twice the frequency. Thus for these devices patterns are 40 bits.

Inputs

An EVR’s local TTL input can cause several actions when triggered. It may be directly connected to one of the upstream
Distributed Bus bits, it may cause an event to be sent on the upstream links, or applied to the local Mapping Ram.

The rising edge of a local input can be timestamped.

2.17. EPICS device driver for MRF Event Receiver (EVR) 395

EPICS Documentation Sandbox

Global Timestamp Reception

Each EVR receives synchronous time broadcasts from an EVG. Software may query the current time at any point. The
arrival time of event codes can be saved as well. This can be accomplished with the ‘event’ record device support.

Each EVR may be configured with a different method of incrementing the timestamp counter. See section Timestamp
Sources.

In addition to being slaved to an EVG, those EVR models/firmware which provide a Software Event transmission
function can send timestamps as well. This can be used to simulate timestamps in a standalone environment such as a
test lab. see the TimeSrc property in EVG Functions (DC firmware).

TimeSrc=0

: The default, which disables EVR timestamp generation.

TimeSrc=1

: In External mode the EVR will send a timestamp when event 125 is received. Reception of 125 can be either from
an input, or for DC EVRs the sequencer.

TimeSrc=2

: In Sys Clock mode, the EVR will generate a software 125 event based on the system clock. This is the simplest
standalone mode.

Data Buffer Tx/Rx

A recipient can register callback functions for each Protocol ID. It will then be shown the body of every buffer arriving
with this ID.

A default recipient is provided which stores data in a waveform record.

2.17.5 IOC Deployment

This section outlines a general strategy for adding an EVR to an IOC. First general information is presented, followed
by a section describing the extra steps needed to use mrfioc2 under Linux.

An example IOC shell script is included as “iocBoot/iocevrmrm/st.cmd”.

Device names

All EVGs and EVRs in an IOC are identified by an unique name. This is first given in the IOC shell functions described
below, and repeated in the INP or OUT field of all database records which reference it. Both EVGs, and EVRs share
the same namespace. This restriction is needed since some code is shared between these two devices.

2.17.6 VME64x Device Configuration

The VME bus based EVRs and EVGs are configured using one of the following IOC shell functions.

Receiver
mrmEvrSetupVME("anEVR", 3, 0x30000000, 4, 0x28)

In this example EVR “anEVR” is defined to be the VME card in slot 3. It is given the A32 base address of 0x30000000
and configured to interrupt on level 4 with vector 0x28.

396 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

2.17.7 PCI Device Configuration

PCI bus cards are identified with the mrmEvrSetupPCI() IOC shell function.

Since PCI devices are automatically configured only the geographic address (bus:device.function) needs to be provided.
This information can usually be found at boot time (RTEMS) or in /proc/bus/pci/devices (Linux).

The IOC shell function devPCIShow() is also provided to list PCI devices in the system.

Receiver
mrmEvrSetupPCI("PMC", "1:2.0")

This example defines EVR “PMC” to be bus 1 device 2 function 0.

Support for using mTCA slot number is available on some targets (Linux only as of devlib2 2.9). This does any
automatic lookup of PCI address from slot number. Be aware that PCIe “slot” numbers, while stable across reboots,
may change with hardware configuration, firmware, or OS upgrades.

mrmEvrSetupPCI("PMC", "slot=5")

PCI Setup in Linux

In order to use PCI EVRs in the Linux operating system a small kernel driver must be built and loaded. The source for
this driver is found in ‘mrmShared/linux/’. This directory contains a Makefile for use by the Linux kernel build system
(not EPICS).

To build the driver you must have access to a configured copy of the kernel source used to build the target system’s
kernel. If the build and target systems use the same kernel, then the location will likely be ‘/lib/modules/’uname
-r’/build’. In case of a cross-built kernel the location will be elsewhere.

To build the module for use on the host system:

$ make -C /location/of/mrmShared/linux \
KERNELDIR=/lib/modules/`uname -r`/build modules_install
$ sudo depmod -a
$ sudo modprobe mrf

Building for a cross-target might look like:

$ make -C /location/of/mrmShared/linux \
KERNELDIR=/location/of/kernel/src \
ARCH=arm CROSS_COMPILE=/usr/local/bin/arm- \
INSTALL_MOD_PATH=/location/of/target/root \
modules_install

Once the module is installed on the running target the special device file associated with each EVR must be created.
If your target system is running UDEV this will happen automatically. See mrmShared/linux/README for example
UDEV config. If UDEV is not present, then you must do the following.

grep mrf /proc/devices
254 mrf
mknod -m 666 /dev/uio0 c 254 0

If may be necessary to change the file permission to allow the IOC process to open it. UDEV users may find one of the
following commands useful for constructing a rules file.

2.17. EPICS device driver for MRF Event Receiver (EVR) 397

EPICS Documentation Sandbox

udevinfo -a -p $(udevinfo -q path -n /dev/uio0)

udevadm info -a -p $(udevadm info -q path -n /dev/uio0)

Each additional device adds one to the number (uio1, uio2, . . .).

Once the device file exists with the correct permissions the IOC will be able to location it based on the
bus:device.function given an to mrmEvrSetupPCI().

2.17.8 Example Databases

The mrfioc2 module includes example database templates for all supported devices (see Supported Hardware). While
each is fully functional, it is expected that most sites will make modifications. It is suggested that the original be left
unchanged and a copy be made with the institute name and other information as a suffix. (evr-pmc-230.substitutions
becomes evr-pmc-230-nsls2.substitutions).

The authors would like to encourage users to send their customized databases back so that they may be included as
examples in future releases of mrfioc2.

The templates consist of a substitutions file for each model (MTCA, PMC, cPCI, VME-RF). These templates instanciate
the correct number of records for the inputs/outputs found on each device. It also includes entries for event mappings
and database events which will be frequent targets for customization.

Each substitutions file will be expanded during the build process with the MSI utility to create a database file with two
undefined macros (P and C). ‘SYS’ and ‘D’ define a common prefix shared by all PVs and must be unique in the system.
‘EVR’ is a card name also given as the first argument of one of the mrmEvrSetup*() IOC shell functions (unique in
each IOC).

Thus an IOC with two identical VME cards could use a configuration like:

mrmEvrSetupVME("evr1",5,0x20000000,3,0x26)
mrmEvrSetupVME("evr2",6,0x21000000,3,0x28)
dbLoadRecords("evr-vmerf-230.db", "SYS=test, D=evr:a, EVR=evr1")
dbLoadRecords("evr-vmerf-230.db", "SYS=test, D=evr:b, EVR=evr2")

autosave

All example database files include “info()” entries to generate autosave request files. The example IOC shell script
“iocBoot/iocevrmrm/st.cmd” includes the following to configure autosave.

save_restoreDebug(2)
dbLoadRecords("db/save_restoreStatus.db", "P=mrftest:")
save_restoreSet_status_prefix("mrftest:")

set_savefile_path("${mnt}/as","/save")
set_requestfile_path("${mnt}/as","/req")

This enables some extra debug information which is useful for testing, and loads the autosave on-line status database.
It also sets the locations where .sav and .req files will be searched for.

set_pass0_restoreFile("mrf_settings.sav")
set_pass0_restoreFile("mrf_values.sav")
set_pass1_restoreFile("mrf_values.sav")
set_pass1_restoreFile("mrf_waveforms.sav")

398 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Sets three files which will be loaded. The “values” are loaded twices as is the autosave convention.

iocInit()

makeAutosaveFileFromDbInfo("as/req/mrf_settings.req", "autosaveFields_pass0")
makeAutosaveFileFromDbInfo("as/req/mrf_values.req", "autosaveFields")
makeAutosaveFileFromDbInfo("as/req/mrf_waveforms.req", "autosaveFields_pass1")

After the IOC has started the request files are generated. This is where the “info()” entries in the database files are used.

create_monitor_set("mrf_settings.req", 5 , "")
create_monitor_set("mrf_values.req", 5 , "")
create_monitor_set("mrf_waveforms.req", 30 , "")

Finally the request files are re-read and monitor sets are created.

2.17.9 Testing Procedures

This section presents several step by step procedures which may be useful when testing the function of hardware and
software.

In the “documentation/demo/” directory several IOC shell script files with the commands given in this section as well
as other examples.

EVG and EVR Checkout

This procedure requires both a generator, receiver, and a fiber jumper cable to connect them.

It is assumed that no cables are connected to the front panel of either EVG or EVR. The example “ioc-
Boot/iocevrmrm/st.cmd” script is used with SYS=TST and D=evr for the receiver and D=evg for the generator. Verify
this with the following commands at the IOC shell.

>dbgrep("*Link:Clk-SP")
TST{evr}Link:Clk-SP
>dbgrep("*FracSynFreq-SP")
TST{evg-EvtClk}FracSynFreq-SP

The following examples use the IOC shell commands dbpr() and dbpf(). Remote use of caput and caget is also
possible.

>dbpf("TST{evg-EvtClk}Source-Sel","FracSyn")
>dbpf("TST{evg-EvtClk}FracSynFreq-SP","125.0")
>dbpf("TST{evr}Link:Clk-SP","125.0")
>dbpf("TST{evr}Ena-Sel","Enabled")
>dbpr("TST{evr}Link-Sts")
...
... VAL: 0

This sets the event link speed on both the EVR and EVG. The EVG is commanded to use its internal synthesizer instead
of an external clock.

Now use the fiber jumper cable to connect the TX port of the generator to the RX port of the receiver. (The Tx port
will have a faint red light coming from it).

Once connected the red link fail LED should go off and the link status PV should read OK (1).

2.17. EPICS device driver for MRF Event Receiver (EVR) 399

EPICS Documentation Sandbox

>dbpr("TST{evr}Link-Sts")
...
... VAL: 1

At this point the receivier has locked to the generator signal, but no data is being sent. This includes the heartbeat event.
Thus the heartbeat timeout counter should be increasing.

>dbpr("TST{evr}Cnt:LinkTimo-I")
...
... VAL: 45
>dbpr("TST{evr}Cnt:LinkTimo-I")
...
... VAL: 47

Now we will set up the generator to send a periodic event code.

>dbpf("TST{evg-Mxc:0}Prescaler-SP", "125000000")
>dbpr("TST{evg-Mxc:0}Frequency-RB",1)
...
EGU: Hz ...
... VAL: 1
>dbpf("TST{evg-TrigEvt:0}EvtCode-SP", "122")
>dbpf("TST{evg-TrigEvt:0}TrigSrc-Sel", "Mxc0")
>dbpf("TST{evg-TrigEvt:1}EvtCode-SP", "125")
>dbpf("TST{evg-TrigEvt:1}TrigSrc-Sel", "Mxc0")
>dbpf("TST{evr}Evt:Blink0-SP", "125")

This configures multiplexed counter 0 (Mxc #0) to trigger on the event clock frequency divided by 125000000. In this
case this gives 1Hz. Trigger event #0 is then configured to send event code 122, and trigger event #1 to send code 125,
when Mxc #0 triggers.

At this point both the EVG’s amber EVENT OUT led and the EVR’s EVENT IN led should flash at 1Hz.

For diagnostics the EVR’s Blink0 mapping is configured to blink the EVR’s EVENT OUT led when event code 125 is
received. Setting to 0 will cause it to stop blinking.

Event code 122 is the heartbeat reset event. Since it is being sent the link timeout counter should no longer be increasing.

>dbpr("TST{evr}Cnt:LinkTimo-I")
...
... VAL: 120
>dbpr("TST{evr}Cnt:LinkTimo-I")
...
... VAL: 120

At this point, if the system is given an NTP server the EVG will get a correct (but unsynchronized) time and messages
similar to the following will be printed.

Starting timestamping
epicsTime: Wed Jun 01 2011 17:54:53.000000000
TS becomes valid after fault 4de6b533

The first two lines come from the EVG and indicate that it is sending a timestamp. The third line comes from the EVR
and indicates that it is receiving a correct timestamp.

The counter for the 1Hz event should now be increasing.

400 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

>dbpr("TST{evr}1hzCnt-I")
... VAL: 5
>dbpr("TST{evr}1hzCnt-I")
... VAL: 6

Timestamp Test

An external 1Hz pulse generator is required for this test. It should be connected to front panel input 0 on the EVG. This
is LEMO connector expecting a TTL signal.

>dbpr("TST{evr}Link-Sts")
...
... VAL: 1

If the event link status is not OK then perform setup as described in the previous test.

Check the current time source status

>generalTimeReport(2)
Backwards time errors prevented 0 times.

Current Time Providers: "EVR", priority = 50
Current Time not available

"NTP", priority = 100
Current Time is 2011-06-02 10:23:26.058125.

"OS Clock", priority = 999
Current Time is 2011-06-02 10:23:26.057101.

Event Time Providers:
"EVR", priority = 50

This shows that the NTP time source is functioning. This is required for this test.

>dbpf("TST{evg-TrigEvt:1}EvtCode-SP", "125")
>dbpf("TST{evg-TrigEvt:1}TrigSrc-Sel", "Front0")
>dbpf("TST{evr}Evt:Blink0-SP", "125")

Sends event code 125 on the rising edge for front panel input 0. For diagnostics sets the blink mapping. If the led is
not blinking then check the 1Hz pulse generator.

dbpr("TST{evr}Time:Valid-Sts")
...
... VAL: 1

Indicates that the EVR has received a valid time

>generalTimeReport(2)
Backwards time errors prevented 0 times.

Current Time Providers: "EVR", priority = 50
Current Time is 2011-06-02 10:26:50.683808.

"NTP", priority = 100
Current Time is 2011-06-02 10:26:50.681220.

(continues on next page)

2.17. EPICS device driver for MRF Event Receiver (EVR) 401

EPICS Documentation Sandbox

(continued from previous page)

"OS Clock", priority = 999
Current Time is 2011-06-02 10:26:50.683854.

Event Time Providers:
"EVR", priority = 50

Shows that a valid time is now being reported.

$ camonitor TST{evr:3}Time-I
TST{evr:3}Time-I 2011-06-02 10:32:11.999993 Thu, 02 Jun 2011 10:32:12 -0400
TST{evr:3}Time-I 2011-06-02 10:32:12.999993 Thu, 02 Jun 2011 10:32:13 -0400
TST{evr:3}Time-I 2011-06-02 10:32:13.999993 Thu, 02 Jun 2011 10:32:14 -0400
TST{evr:3}Time-I 2011-06-02 10:32:14.999993 Thu, 02 Jun 2011 10:32:15 -0400

The timestamp indicator record takes its record timestamp from the arrival of the 125 event code. As can be seen, this
time is stored immediately before the sub-seconds is zeroed. This can be verified by switching this.

$ caget TST{evr:3}Time-I.TSE
TST{evr:3}Time-I.TSE 125
$ caput TST{evr:3}Time-I.TSE 0
Old : TST{evr:3}Time-I.TSE 125
New : TST{evr:3}Time-I.TSE 0
$ camonitor TST{evr:3}Time-I
TST{evr:3}Time-I 2011-06-02 10:35:31.005655 Thu, 02 Jun 2011 10:35:31 -0400
TST{evr:3}Time-I 2011-06-02 10:35:32.005655 Thu, 02 Jun 2011 10:35:32 -0400
TST{evr:3}Time-I 2011-06-02 10:35:33.005655 Thu, 02 Jun 2011 10:35:33 -0400
TST{evr:3}Time-I 2011-06-02 10:35:34.005655 Thu, 02 Jun 2011 10:35:34 -0400

Now a time latched by software when this record is processed. For real-time system this time should be stable.

2.17.10 Firmware Update

300-series Devices

• PCIe-EVR-300DC

• mTCA-EVR-300

• mTCA-EVM-300

These devices support upgrade of firmware through PCIe register access. As such, a failed upgrade will result in an
unusable device.

To test if a card may be upgrade with this mechanism, run flashinfo and flashread command. The following shows a
device which can be upgraded.

epics> mrmEvrSetupPCI("EVR1", "03:00.0")
...

epics> flashinfo("EVR1:FLASH")
Vendor: 20 (Micron)
Device: ba
ID: 18
Capacity: 0x1000000

(continues on next page)

402 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

(continued from previous page)

Sector: 0x10000
Page: 0x100
S/N: 23 51 61 31 16 00 14 00 31 26 05 15 ee 45
epics> flashread("EVR1:FLASH", 0, 64)
00090ff0 0ff00ff0 0ff00000 0161001f
70636965 65767233 30306463 3b557365
7249443d 30584646 46464646 46460062
000c376b 37307466 62673637 36006300
epics>

Before upgrading, it is suggested to backup the existing firmware. If the size of the existing firmware is known, then
this size can be used. Otherwise, use the capacity reported by flashinfo. All Xilinx bit files for a particular device
typically have the same size.

In this example of a PCIe-EVR-300DC with the 207.0 firmware, the exact size is 3011417 bytes, which we arbitrarily
round up to 3MB.

epics> flashread("EVR1:FLASH", 0, 0x300000, "PCIe-EVR-300DC.207.0.backup.bit")
| 3080192
...

Now write the new firmware file.

epics> flashwrite("EVR1:FLASH", 0, "PCIe-EVR-300DC.207.6.bit")

If the update process is interrupted, do not power cycle! Re-run the update process to completion.

After the write completes successfully, power cycle the card to load the new bit file.

VME EVRs and EVGs

Update for VME cards is accomplished through the ethernet jack label “10 BaseT”. The procedure covered in the MRF
manual.

cPCI-EVRTG-300

Undocumented.

PMC-EVR-230

Firmware update for the PMC module EVR is accomplished through a JTAG interface as with the cPCI-EVRTG-300.
For reasons of physical space the JTAG wires are not brought to a connector, but connected to 4 I/O pins of the PLX
9030 PCI bridge chip. In order to control these pins and update the firmware some additional software is needed.
Software update may be performed by using either the parallel port support or through JTAG pins. The running Kernel
must be built with the CONFIG_GENERIC_GPIO and CONFIG_GPIO_SYSFS options if the latter approach is to be
used.

If the parallel port support is available, a message is printed to the kernel log when the Linux kernel module provided
with mrfioc2 (mrmShared/linux) is loaded.

Emulating cable: Minimal

2.17. EPICS device driver for MRF Event Receiver (EVR) 403

EPICS Documentation Sandbox

The kernel module also exposes the 4 I/O pins via the Linux GPIO API. The 4 pins are numbered in the order: TCK,
TMS, TDO, and TDI. The number of the first pin is printed to the kernel log when the MRF kernel module is loaded.

GPIO setup ok, JTAG available at bit 252

In this example the 4 pins would be TCK=252, TMS=253, TDO=254, and TDI=255.

Creating an SVF file from a BIT file

The firmware file will likely be supplied in one of two formats having the extensions .bit or .svf. If the provided file
has the extension .svf then proceed to section Programming with UrJTAG.

To convert a .bit file to a .svf file it is necessary to get the iMPACT programming tool from Xilinx. The easiest way to
do this is with the “Lab Tools” bundle.

http://www.xilinx.com/support/download/index.htm

The following instructions are for iMPACT version 14.2.

1. Install and run the iMPACT program.

2. When prompted to create a project click cancel

3. On the left side of the main window is a pane titled “iMPACT FLows”. Double click on “Create PROM File”

4. Select “Xilinx Flash/PROM” and click the first green arrow.

5. Select “Platform Flash” and “xcf08p” and click “Add Storage Device” then the second green arrow.

6. Select an output file name and path. Ensure that the file format is MCS. Click OK

7. Several small dialogs will appear. When prompted to “Add device” select the .bit file provided by MRF.

8. When prompted to add another device click No.

9. On the left side of the main window is a pane titled “iMPACT Processes”. Double click on “Generate File”.

10. The .mcs file should now be written.

11. Exit and restart iMPACT.

See http://www.xilinx.com/support/documentation/user_guides/ug161.pdf starting on page 67 for more detailed in-
structions.

1. Create a new iMPACT project. Select “Prepare a Boundary-Scan File” and the SVF format.

2. When prompted, select a name for the resulting .svf file

3. When prompted to “Assign New Configuration File” select the .mcs file just created.

4. When prompted to select a PROM type choose “xcf08p”

5. An icon representing the PROM should now appear as the only entry in the JTAG chain.

6. Right click on this icon and select Program.

7. In the dialog which appears check Verify and click OK.

8. The .svf file should now be written.

9. Exit iMPACT

404 Chapter 2. MRF Timing System Reference

http://www.xilinx.com/support/download/index.htm
http://www.xilinx.com/support/documentation/user_guides/ug161.pdf

EPICS Documentation Sandbox

Programming with UrJTAG

http://urjtag.org/

As of August 2012 support to the Linux GPIO “cable” was not included in any UrJTAG release. It is necessary to
checkout and build the development version (commit id b6945fc65 from 9 Aug. 2012 works). This requires the Git
version control tool. To build and use UrJTAG on target system, there may be a need to install certain packages in the
system.

$ sudo apt-get install pciutils make autoconf autopoint libtool
pkg-config bison libusb-1.0-0-dev libusb-dev flex python-dev

With all necessary tools available, configure and build UrJTAG.

$ git clone git://urjtag.git.sourceforge.net/gitroot/urjtag/urjtag
$ cd urjtag/urjtags
$./autogen.sh --disable-nls --disable-python --prefix=$PWD/usr
$ make && make install

Firmware update may be performed using the parallel port support if available, e.g. when loading the kernel driver:

$ sudo modprobe uio
$ sudo modprobe parport
$ sudo insmod mrf.ko
$ dmesg
...
[69.046938] mrf-pci 0000:08:0d.0: MRF Setup complete
[69.047007] mrf-pci 0000:09:0e.0: PCI IRQ 72 -> rerouted to legacy IRQ 16
[69.047589] mrf-pci 0000:09:0e.0: GPIOC 00249412
[69.047626] mrf-pci 0000:09:0e.0: GPIO setup ok, JTAG available at bit 252
[69.144196] mrf-pci 0000:09:0e.0: Emulating cable: Minimal
[69.144239] mrf-pci 0000:09:0e.0: MRF Setup complete
...

The “Emulating cable: Minimal” message indicates that Minimal JTAG cable type can be used to communicate with
a device. A ppdev device should be available for usage with UrJTAG:

$ sudo modprobe ppdev
$ dmesg
...
[69.028268] ppdev: user-space parallel port driver
...
$ ls /dev | grep parport
parport0

On the target system run UrJTAG as root:

./usr/bin/jtag
jtag> cable Minimal ppdev /dev/parport0
Initializing ppdev port /dev/parport0
jtag> detect
IR length: 26
Chain length: 2
Device Id: 00100001001000111110000010010011 (0x2123E093)
Manufacturer: Xilinx (0x093)

(continues on next page)

2.17. EPICS device driver for MRF Event Receiver (EVR) 405

http://urjtag.org/

EPICS Documentation Sandbox

(continued from previous page)

Part(0): xc2vp4 (0x123E)
Stepping: 2
Filename: /epics/urjtag/share/urjtag/xilinx/xc2vp4/xc2vp4

Device Id: 11100101000001010111000010010011 (0xE5057093)
Manufacturer: Xilinx (0x093)
Part(1): xcf08p (0x5057)
Stepping: 14
Filename: /epics/urjtag/share/urjtag/xilinx/xcf08p/xcf08p

jtag> part 1
jtag> svf /location/of/pmc-prom.svf stop progress

Alternatively, a GPIO cable may be utilized if the kernel was built with options required (CONFIG_GENERIC_GPIO
and CONFIG_GPIO_SYSFS), on the target system run UrJTAG as root (or a user which can export and use GPIO
pins).

./usr/bin/jtag
jtag> cable gpio tck=252 tms=253 tdo=254 tdi=255
jtag> detect
IR length: 26
Chain length: 2
Device Id: 00100001001000111110000010010011 (0x2123E093)
Manufacturer: Xilinx (0x093)
Part(0): xc2vp4 (0x123E)
Stepping: 2
Filename: /epics/urjtag/share/urjtag/xilinx/xc2vp4/xc2vp4

Device Id: 11100101000001010111000010010011 (0xE5057093)
Manufacturer: Xilinx (0x093)
Part(1): xcf08p (0x5057)
Stepping: 14
Filename: /epics/urjtag/share/urjtag/xilinx/xcf08p/xcf08p

jtag> part 1
jtag> svf /location/of/pmc-prom.svf stop progress

Note that the device IDs may not be correctly recognized. This will not effect the programming process.

If no errors are printed then the update process was successful. The new firmware will not be loaded until the PMC
module is reset (power cycle system).

2.17.11 NTPD Time Source

It is possible to use an EVR as a time source for the system NTP daemon on Linux. This is implemented using the
shared memory clock driver (#28).

http://www.eecis.udel.edu/~mills/ntp/html/drivers/driver28.html

An IOC is configured to write data to a shared memory segment by adding a line to its start script.

time2ntp("evrname", N)

Here “evrname” is the same name given when configuring the EVR (see [Device Names](#Device names). The memory
segment ID number N must be between 0 and 4 inclusive. The NTP daemon enforces that segments 0 and 1 require
root permissions to use. Segments 2, 3, and 4 can be accessed by an unprivileged user.

406 Chapter 2. MRF Timing System Reference

http://www.eecis.udel.edu/~mills/ntp/html/drivers/driver28.html

EPICS Documentation Sandbox

It is suggested to use an unprivileged segment to avoid running the IOC as root. However, this would allow any user
on the system to effectively control NTPD. So it is not recommended for systems with untrusted users.

The NTP daemon is configured from the file /etc/ntp.conf. On Debian Linux systems using DHCP it will be necessary
to modify /etc/dhcp/dhclient-exit-hooks.d/ntp instead.

server 127.127.28.N minpoll 1 maxpoll 2 prefer
fudge 127.127.28.N refid EVR

This will configure NTPD to read time from segment N. Here N must match what was specified for time2ntp().

When functioning correctly NTPD status should look like:

$ ntpq -p
remote refid st t when poll reach delay offset jitter
===
+time.cs.nsls2.l .GPS. 1 u 29 64 377 2.684 -0.001 0.089
*SHM(3) .EVR. 0 l 7 8 377 0.000 0.000 0.001

The shared memory interface can only be used to provide time with microsecond precision. So this measurement, taken
from a production NSLS2 server, showing a jitter of ±1 microsecond is the best which can be obtained.

If the propagation time from the time source to the EVR is known, then the offset can be given by adding “time1
0.XXX” to the ‘fudge’ line in ntp.conf.

2.17.12 Buffered Timestamp Capture

Some applications are interested in the precise reception timestamp of an asynchronous event code. For example, an
External event code from an EVR Input. Further, if this Input/event code occurs at a high rate, it is preferable for
software to process reception times in batches.

The motivating use case for this feature was monitoring of a rotational encoder which produces a pulse on crossing a
particular angle. The times of this crossing are needed to calculate frequency and phase. Further, crossing occur at
~1KHz.

Buffers are setup by loading instances of the db/mrmevrtsbuf.db database. Many buffers may be loaded. While
un-useful it is possible to associate multiple buffers with the same event code.

dbLoadRecords("db/evr-pcie-300dc.db","SYS=TST, D=evr:1, EVR=EVR,\
FEVT=125")

dbLoadRecords("db/mrmevrtsbuf.db", "SYS=TST, D=evr:1-ts:1, EVR=EVR,\
CODE=20, TRIG=10, FLUSH=TimesRelFlush")

In this example, the (optional) CODE and TRIG macros name two event codes. CODE=20 is the event for which the
reception time will be captured. The (also optional) TRIG=10 is an event for which reception will cause the internal
buffer of timestamps to be flushed to a waveform record. Alternately, flushing can be triggered by another record.

The CODE and TRIG macros are setting the default values of fields which may be changed at runtime.

Each waveform record which present timestamps does so in a format determined by the FLUSH macro.

TimesRelFlush

: Elements are times in nanoseconds relative to the flushing action (either flush event code, or manual flush). The time
of the flushing action is stored as the record timestamp. Element values are always negative. This is the default if
FLUSH is not set.

TimesRelFirst

2.17. EPICS device driver for MRF Event Receiver (EVR) 407

EPICS Documentation Sandbox

: Elements are times in nanoseconds relative to the time of the first event received after a previous flush. The time
of the first event is stored in the record timestamp. Element values are always positive, and the first element value is
always zero.

2.17.13 Implementation Details

Details of some parts of the driver which may be useful in understanding (and trouble shooting) the behavior of the
driver.

Event code FIFO Buffer

Each EVR implements a hardware First In First Out buffer for event codes. When certain “interesting” event code
numbers are received the code and arrival time are placed in this buffer. Two interrupt condition are generated by the
FIFO: not empty, and full. The first is asserted when the first event added, and cleared when the last event is removed.
The second occurs when last free entry in the buffer is consumed. Further event occurrences are lost.

When the not empty interrupt occurs the fifo drain task (named EVRFIFO in epicsThreadShowAll()) is woken up by
a message queue. This task runs at scan high priority (90). Once awakened it will remove at most 512 event codes
from the buffer before sleeping again. The number 512 is an arbitrary number chosen to prevent the starvation of lower
priority tasks if a high frequency event code is accidentally mapped into the FIFO. A minimum sleep time is enforced
by the mrmEvrFIFOPeriod variable. This governs the maximum rate that events can be reported through the FIFO.
Setting to 0 will disable it.

Each of the event codes 1-255 has an IOSCANPVT and a list of callback functions (type EVR::eventCallback) which
will be invoked when the event occurs.

An invocation of an IOSCANPVT list may place an arbitrary number of CALLBACKs into the message queue of the
three EPICS callback scan tasks (High, Medium, and Low). If these message queues are overflowed then CALLBACK
in other drivers my be lost. The scanIoRequest() function does not report this error prior to Base 3.15.0.2.

To avoid this disastrous occurrence the EVR driver will not re-run the scan list for an event, until all actions at all
priorities from the previous run have finished. This is implemented by placing a special sentinel CALLBACK in all
three queues. An event will not be re-run until all three of the CALLBACK have run.

The FIFO servicing code can indicate two error conditions. Occurrences of these errors are recorded in the FIFO
Overflow Count and FIFO Over rate counters.

The FIFO Overflow Count gives the number of times the hardware FIFO buffer has overflowed. This is a serious
error since arbitrary event code (including the timestamping codes) will be lost.

The FIFO Over rate counter counts the number of times any event reoccurred before the actions of the last occurrence
were finished processing. This is less serious since other event codes are not effected.

Data Buffer reception

Each EVR can receive a single data buffer. Once a data message has been received, the reception engine is disabled to
allow time to download the buffer. Then the engine can be re-enabled in preparation for the next message. An interrupt
is generated when the message has been fully received, and the engine disabled.

Instead of a separate thread, buffer reception is implemented as a two stage callback run by the High (first) and Medium
(second) priority scan tasks. The first callback copies the buffer into memory and immediately re-enables buffer recep-
tion, it then passes the data to the second callback. This callback passes the buffer to a list of user callback functions
which have registered interest in the Protocol ID found in the message header.

408 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Timestamp validation

It is impossible to verify a time without a second trusted reference. Since such a reference is not generally available,
the driver can only make some checks against corruption.

The seconds part of the timestamp should only change when the 1Hz reset event (125) is received from the EVG.
Therefore a callback is attached to that event code. When a new seconds value arrives it is compared to the previous
stored value. If it is exactly 1 greater then it is taken to be the new seconds value. If it is not then the EVR time is
declared invalid.

When the time is invalid, it can only become valid after five sequential seconds values are received. Any out of sequence
value resets the count.

2.17.14 EVR Device Support Reference

The EPICS support module for MRF devices consists of a number of supports which are generally tied to a specific
logical sub-unit. Each sub-unit may be thought of as an object having a number of properties. For example, each Delay
Generator has properties ‘Delay’ and ‘Width’. These properties can be read or modified in several ways. A delay can
specified as an integer number of ticks of its reference clock (hardware view), or in seconds as a floating point number
(user view).

In this example the properties ‘Delay’ and ‘Width’ should be settable in exact integer as well as the more useful, but
imprecise, floating point units (eg. seconds). This needs to be accomplished by two different device supports (longout,
and ao). Of course it is also useful to have some confirmation that settings have been applied so read-backs are desireable
(longin, ai).

Some of the device supports defined are as follows. The full list is given in mrfCommon/src/mrfCommon.dbd.

device(longin , INST_IO, devLIFromUINT32, "Obj Prop uint32")
device(longin , INST_IO, devLIFromUINT16, "Obj Prop uint16")
device(longin , INST_IO, devLIFromBool, "Obj Prop bool")

device(ai , INST_IO, devAOFromDouble, "Obj Prop double")
device(ai , INST_IO, devAOFromUINT32, "Obj Prop uint32")
device(ai , INST_IO, devAOFromUINT16, "Obj Prop uint16")

Unless otherwise noted, all device support use INST_IO input/output links with the format:

@OBJ=$(OBJECTNAME), PROP=Property Name

Since the Pulser sub-unit has the property ‘Delay’ which supports both integer and float settings, the following database
can be constructed.

record(ao, "$(PN)Delay-SP")
{
field(DTYP, "Obj Prop double")
field(OUT , "@OBJ=$(OBJ), PROP=Delay")
field(PINI, "YES")
field(DESC, "Pulse Generator $(PID)")
field(FLNK, "$(PN)Delay-RB")

}
record(ai, "$(PN)Delay-RB")
{
field(DTYP, "Obj Prop double")
field(INP , "@OBJ=$(OBJ), PROP=Delay")

(continues on next page)

2.17. EPICS device driver for MRF Event Receiver (EVR) 409

EPICS Documentation Sandbox

(continued from previous page)

field(FLNK, "$(PN)Delay:Raw-RB")
}
record(longin, "$(PN)Delay:Raw-RB")
{
field(DTYP, "Obj Prop uint32")
field(INP , "@OBJ=$(OBJ), PROP=Delay")

}

This provides setting in engineering units and readbacks in both EGU and raw for the delay property.

Note: It is inadvisable to have to more then one output record pointing to the same property of the same device.
However, it is allowed since there are cases where this is desireable.

Note: Documentation of individual device support may be found in the example database files.

2.17.15 Global Properties

Properties in this section apply to the EVR as a whole. Records accessing properties in this section will have DTYP
set to “EVR”.

See: evrApp/Db/evrbase.db

410 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Name Record type(s) Description
Enable bo, bi Master enable for the EVR.
PLL Lock Status bi

Link Status bi Event link status
Timestamp Valid bi Validity of the timestamp
Model longin Hardware model
Version longin

Sw Version

FIFO Overflow Count longin

Fifo Over Rate longin

HB Timeout Count

Clock ao, ai

Timestamp Source longout, longin Selects timestamp source
Timestamp Clock ao, ai

Timestamp Prescaler longin

Timestamp stringin

Event Clock TD Div longin

Receive Error Count longin

For example, the boolean property Enable could be written by the following record:

record(bo, "$(P)ena ") {
field (DTYP, " Obj Prop bool ")
field (OUT , "@OBJ=$(OBJ), PROP=Enable")

}

PLL Lock Status

Implemented for: bi

This indicates whether the phase locked loop which synchronizes an EVR’s local oscillator with the phase of the EVG’s
oscillator. Outputs will not be stable unless the PLL is locked.

Except for immediately (1sec) after a change to the fractional synthesizer this property should always read as true
(locked). Reading false for longer than one second is likely an indication that the fractional synthesizer is misconfigured,
or that a hardware fault has occurred.

2.17. EPICS device driver for MRF Event Receiver (EVR) 411

EPICS Documentation Sandbox

Link Status

Indicates when the event link is active. This means that the receiver sees light, and that valid data is being decoded.

A reading of false may be caused by a number of conditions including: EVG down, fiber unplugged or broken, and/or
incorrect fractional synthesizer frequency.

Timestamp Valid

Indicates if the EVR has a current, valid timestamp. Conditions under which the timestamp is declared invalid include:

• TS counter reset event received, but “seconds” value not updated.

• Found timestamp with previous invalid value. Catches old timestamp in buffers.

• TS counter exceeded limit (eg. missed reset event)

• New seconds value is less then the last valid values, or more then two greater then the last valid value. (Light
Soure time model only). This will reject single bad values sent by the EVG.

• Event Link error (Status is error)

The timestamp will become valid when a new seconds value is received from the EVG.

Model

The hardware model number.

Version

The firmware version number.

Sw Version

A string describing the version of the driver software. This is captured when the driver is compiled

FIFO Overflow Count

Counts the number of hardware event buffer overflows. There is a single hard- ware buffer for all event codes. When
it overflows arbitrary events will fail to be delivered to software. This can cause the timestamp to falsely be invali-
dated, and can disrupt database processing which depends on event reception. This is a serious error which should be
corrected.

Note: An overflow does not effect physical outputs.

412 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

FIFO Over rate

Counts overflows in all of the per event software buffers. This indicates that the period between successive events is
shorter then the runtime of the code (callbacks, and database processing) that is causes. Extra events are being dropped
and cause no action. Actions of other event codes are not effected.

Clock

Frequency of an EVR’s local oscillator. This must be close enough to the EVG master oscilator to allow the phase
locked loop in the EVR to lock. The native analog units are Hertz (Hz). This can be changed with the LINR and ESLO
fields. Use ESLO of 1e-6 to allow user setting/reading in MHz.

Timestamp Sources

Determines what causes the timestamp event counter to tick. There are three possible values:

• Event clock: Use an integer divisor of the EVR’s local oscillator.

• Mapped code(s): Increments the counter whenever certain events arrive. These codes can be defined using
special mapping records.

• DBus 4: Increments on the 0->1 transition of DBus bit #4.

Timestamp Clock

Specifies the rate at which the timestamp event counter will be incremented. This determines the resolution of all
timestamps. This setting is used in conjunction with the ‘Timestamp Source’. When the timestamp source is set to
“Event clock” this property is used to compute an integer divider from the EVR’s local oscilator frequency to the given
frequency. Since this may not be exact it is recommended to read back the actual divider setting via the “Timestamp
Prescaler” property. In all modes this value is stored in memory and used to convert the timestamp event counter values
from ticks to seconds. By default the analog units are Hertz (Hz). This can be changed with the LINR and ESLO fields.
Use ESLO of 1e-6 to allow user setting/reading in MHz.

Timestamp Prescaler

When using the “Event clock” timestamp source this will return the actual divisor used. In other modes it reads 0.

Timestamp

When processed creates a human readable string with either the current event link time, or the event link time when
code # was last received. If code is omitted or 0, the the current wall clock time is used. Code may also have any valid
event number 1-255. Then it will print the time of the last received event.

2.17. EPICS device driver for MRF Event Receiver (EVR) 413

EPICS Documentation Sandbox

Event Clock TS Div

This is an approximate divider from the event link frequency down to 1MHz. It is used to determine the heartbeat
timeout.

Receive Error Count

The number of event link errors which have occurred.

2.17.16 Pulse Generator

Properties in this section apply to the Pulse Generator (Pulser) sub-unit named $(OBJ):Pul# where # is a number
between 0 and 15. Records accessing properties in this section will have DTYP set to “EVR Pulser”.

See: evrApp/Db/evrpulser.db

Enable

Implemented for: bo, bi When not set, the output of the Pulse Generator will remain in its inactive state (normally low).

The generator must be enabled before mapped actions will have any effect.

Polarity

Implemented for: bo, bi Reverses the output polarity. When set, changes the Pulse Generator’s output from normally
low to normally high.

Prescaler

Implemented for: longout, longin Decreases the resolution of both delay and width by an integer multiple. Determines
the tick rate of the internal counters used for delay and width with respect to the EVR’s local oscillator.

Delay

Implemented for: ao, longout, ai, longin Determines the time between when the Pulse Generator is triggered and when
it changes state from inactive to active (normally low to high). This can be given in integer ticks, or floating point
seconds. This can be changed with the LINR and ESLO fields. Use ESLO of 1e6 to allow user setting/reading in
microseconds.

Width

Implemented for: ao, longout, ai, longin Determines the time between when the Pulse Generator changes state from
inactive to active (normally low to high), and when it changes back to inactive. This can be given in integer ticks,
or floating point seconds. This can be changed with the LINR and ESLO fields. Use ESLO of 1e6 to allow user
setting/reading in microseconds.

414 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Prescaler (Clock Divider)

Properties in this section apply to the Prescaler sub-unit. Records accessing properties in this section will have DTYP
set to “EVR Prescaler”. See: evrApp/Db/evrscale.db

Divide

Implemented for: longout, ao, longin Sets the integer divisor between the Event Clock and the sub-unit output. By
default the analog units are Hertz (Hz). This can be changed with the LINR and ESLO fields. Use ESLO of 1e-6 to
allow user setting/reading in MHz.

2.17.17 Output (TTL and CML)

Properties in this section apply to the Output sub-unit. Records accessing properties in this section will have DTYP
set to “EVR Output”. See: evrMrmApp/Db/mrmevrout.db

Map

Implemented for: longout, longin The meaning of this value is determined by the specific implementation used. For
the MRM implementation the following codes are valid.

Output Source
63 Force High
62 Force Low
42 Prescaler (Divider) 2
41 Prescaler (Divider) 1
40 Prescaler (Divider) 0
39 Distributed Bus Bit 7
38 Distributed Bus Bit 6
37 Distributed Bus Bit 5
36 Distributed Bus Bit 4
35 Distributed Bus Bit 3
34 Distributed Bus Bit 2
33 Distributed Bus Bit 1
32 Distributed Bus Bit 0
9 Pulse generator 9
8 Pulse generator 8
7 Pulse generator 7
6 Pulse generator 6
5 Pulse generator 5
4 Pulse generator 4
3 Pulse generator 3
2 Pulse generator 2
1 Pulse generator 1
0 Pulse generator 0

2.17. EPICS device driver for MRF Event Receiver (EVR) 415

EPICS Documentation Sandbox

2.17.18 Output (CML only)

Additional properties for Current Mode Logic (CML) outputs. Records accessing properties in this section will have
DTYP set to “EVR CML” with the exception of waveform records which have either “EVR CML Pattern Set” or “EVR
CML Pattern Get”.

See: evrApp/Db/evrcml.db

Enable

Implemented for: bo, bi Trigger permit.

Power

Implemented for: bo, bi Current driver on.

Reset

Implemented for: bo, bi Pattern reset.

Mode

Implemented for: mbbo Selects CML pattern mode. Possible values are: 4x Pattern (0), Frequency (1), Waveform (2).

4x Pattern Uses the Pat Rise, Pat High, Pat Fall, and Pat Low properties to store four 20 bit (0 -> 0xfff) sub-patterns.

Frequency Uses the Freq Trig Lvl, Counts High, and Counts Low properties Waveform Uses the bit pattern stored by
the Pattern Set property.

Pat Rise/High/Fall/Low

Implemented for: longout, longin Each property stores a seperate 20-bit pattern (0 -> 0xfff). These patterns are sent
during the four parts of a square wave. Rising and Falling patterns start as soon as the edge is detected and will interrupt
the pattern currently being sent. The High and Low patterns are sent after an edge pattern is sent and will repeat until
the next edge.

Freq Trig Lvl

Implemented for: bo, bi Synchronize forces to this level when in frequency mode.

Counts High/Low

Implemented for: longout, longin, ao, ai Stores a value which is the number of counts (long) or time (analog) of the
high or low part of a square wave. The number of ticks must be >20 and the time must be greater then one period of
the event clock.

416 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

2.17.19 Input

Properties in this section apply to the Input sub-unit. Records accessing properties in this section will have DTYP set
to “EVR Input”. See: evrApp/Db/evrin.db

Active Level

Implemented for: bo, bi When operating in level triggered mode, determines if codes are sent when the input level is
low, or high.

Active Edge

Implemented for: bo, bi When operating in edge triggered mode, Determines if codes are sent on the falling or rising
edge in the input signal.

External Mode

Implemented for: mbbo, mbbi Selects the condition (Level, Edge, None) in which to inject event codes into the local
mapping ram.

These codes are treated as codes coming from the downstream event link.

External Code

Implemented for: longout, longin Sets the code which will be applied to the local mapping ram whenever the ‘External
Mode’ condition is met.

Backwards Mode

Implemented for: mbbo, mbbi Selects the condition (Level, Edge, None) in which to send on the upstream event link.

Backwards Code

Implemented for: longout, longin Sets the code which will be sent on the upstream event link whenever the ‘Backwards
Mode’ condition is met.

DBus Mask

Implemented for: mbbo, mbbi Sets the upstream Distributed Bus bit mask which is driven by this input.

2.17. EPICS device driver for MRF Event Receiver (EVR) 417

EPICS Documentation Sandbox

2.17.20 Event Mapping

Properties in this section describe actions which should be taken when an event code is received.

Pulse Generator Mapping

Implemented for: longout

See: evrApp/Db/evrpulsermap.db

Causes a received event to trigger a Pulse Generator (Pulser) sub-unit, or force it into an active (set) or inactive (reset)
state.

These records will have DTYP set to “EVR Pulser Mapping”. Each record will cause one event to trigger, set, or reset
one Pulse Generator. It is possible (and likely) that more then one record will interact with each event code or Pulse
Generator. However, each pairing must be unique.

record (longout, "(P)(N)$(M)") {
field(DTYP, "EVR Pulser Mapping")
field(OUT , "@C=$(C) , I=$(PID) , Func=$(F)")
field(PINI , "YES")
field(DESC, "Mapping for Pulser $(PID)")
field(VAL , "$(EVT)")
field(LOPR, "0")
field(HOPR, "255")
field(DRVL, "0")
field(DRVH, "255")

In this example the event $(EVT) specified in the VAL field will cause function $(F) on Pulse Generator # $(PID).
Current functions are ‘Trig’, ‘Reset’, and ‘Set’.

Special Function Mapping

Implemented for: longout

See: evrApp/Db/evrmap.db and compare with register definition.

Allows a number of special actions to be mapped to certains events. These actions include:

Blink An LED on the EVRs front panel will blink when the code is received.

Forward The received code will be immediately retransmits on the upstream event link.

Stop Log Freeze the circular event log buffer. An CPU interrupt will be raised which will cause the buffer to be
downloaded. This might be a useful action to map to a fault event.

Log Include this event code in the circular event log.

Heartbeat This event resets the heartbeat timeout timer.

Reset PS Resets the phase of all prescalers.

TS reset Transfers the seconds timestamp from the shift register and zeros the sub-seconds part.

TS tick When the timestamp source is ‘Mapped code’ then any event with this mapping will cause the sub-seconds
part of the timestamp to increment.

Shift 1 Shifts the current value of the seconds timestamp shift register up by one bit and sets the low bit to 1.

418 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Shift 0 Shifts the current value of the seconds timestamp shift register up by one bit and sets the low bit to 0.

FIFO Bypass the automatic allocation mechanism and always include this code in the event FIFO.

In the following example the front panel LED on the EVR will blink whenever event 14 is received.

record (longout , "$(P)map: blink") {
field(DTYP, "EVR Mapping")
field(OUT , "@C=$(C) , Func=Blink")
field(PINI , "YES")
field(VAL , "14")
field(LOPR, "0")
field(HOPR, "255")

}

2.17.21 Database Events

Implemented for: longout See: evrApp/Db/evrevent.db

A device support for the ‘event’ recordtype is provided which uses the Event FIFO to record the arrival of certain
interesting events.

When set to SCAN ‘I/O Intr’ the event record device support will process the record causing the requested DB event.

record (longout ,"(P)(N)") {
field (DTYP,"EVR")
field (SCAN,"I/O Intr")
field (INP ,"@Card=$(C) ,Code=$(CODE)")
field (VAL ,"$(EVNT)")
field (TSE ,"2") # from device support
field (FLNK,"(P)(N) : count")

}

record (calc, "(P)(N):count") {
field (SCAN, "Event")
field (EVNT, "$(EVNT)")
field (CALC, "A+1")
field (INPA , "(P)(N) : count NPP")
field (TSEL, "(P)(N) .TIME")

}

In this example the hardware event code ‘$(CODE)’ will cause the database event ‘$(EVNT)’.

Note:

that while both ‘$(CODE)’ and ‘$(EVNT)’ are numbers, they need not be the same. Hardware code 21 can cause DB
event 40.

2.17. EPICS device driver for MRF Event Receiver (EVR) 419

EPICS Documentation Sandbox

2.17.22 Data Buffer Rx

Records accessing properties in this section will have DTYP set to “MRM EVR Buf Rx”. See:
evrApp/Db/mrmevrbufrx.db

Enable Data

Implemented for: bo Selects Event link data mode. This chooses between DBus only, and DBus+Buffer modes. In
DBus only mode Data Buffer reception is not possible.

Data Rx

Implemented for: waveform When a buffer with the given Protocol ID is received a copy is placed in this record. It is
possible to have many records receiving the same Protocol ID.

Note:

In order to avoid extra copy overhead this record bypasses the normal scanning process. It function like “I/O Intr”,
however the SCAN field should be left as “Passive”.

record (waveform , "$(P)dbus:recv:u32")

{
field (DESC,"Recv Buffer")
field (DTYP,"MRM EVR Buf Rx")
field (INP ,"@C=$(C) , Proto=$(PROTO) , P=Data Rx")
field (FTVL,"ULONG")
field (NELM,"2046")
info(autosaveFields_pass0 , "INP")

}

2.17.23 Data Buffer Tx

Records accessing properties in this section will have DTYP set to “MRF Data Buf Tx”.

This section is shared between the EVR and EVG.

Outgoing Event Data Mode

See: mrmShared/Db/databuftxCtrl.db Implemented for: bo Selects Event link data mode. This chooses between DBus
only, and DBus+Buffer modes. In DBus only mode Data Buffer transmission is not possible.

420 Chapter 2. MRF Timing System Reference

EPICS Documentation Sandbox

Data Tx

See: mrmShared/Db/databuftx.db This records sends a block of data with the given Protocol ID.

record (waveform , "$(P)dbus:send:u32")
{
field (DESC, " Send Buffer")
field (DTYP, "MRF Data Buf Tx")
field (INP , "@C=$ (C) , Proto=$ (PROTO) , P=Data Tx")
field (FTVL, "ULONG")
field (NELM, " 2046 ")
info(autosaveFields_pass0 , "INP ")
info(autosaveFields_pass1 , "VAL")

}

Per-device Database Files

Several database are installed by default for use with certain devices. Use with different devices is not an error, but will
result in warnings being printed for sub-units included in the database file, but not physically present.

• db/evr-cpci-230.db

• db/evr-cpci-300.db

• db/evr-mtca-300.db

• db/evr-pcie-300dc.db

• db/evr-pmc-230.db

• db/evr-tg-300.db

• db/evr-vmerf-230.db

Special Database Files

Several database files are provided to augment the per-device files. These optional files are not tied to a specific hardware
sub-unit.

• db/evrevent.db

Adds a reception counter for a specific event code.

• db/mrmevrtsbuf.db

Adds a capture buffer for reception times of a certain, fast, event code.

• db/evralias.db

A set of alias() entries to give an alternative (application specific) name prefix(s) for anEVR pulser.

• db/databuftx.db

• db/mrmevrbufrx.db

Examples of sending and receiving a data buffer.

• db/evrNtp.db

Status for the builtin NTP clock driver.

2.17. EPICS device driver for MRF Event Receiver (EVR) 421

EPICS Documentation Sandbox

EnablePLL
This indicates whether the phase locked loop which synchronizes an EVR’s local oscillator with the phase of
the EVG’s oscillator. Outputs will not be stable unless the PLL is locked. Except for immediately (1sec) after a
change to the fractional synthesizer this property should always read as true (locked). Reading false for longer
then one second is likely an indication that the fractional synthesize is misconfigured, or that a hardware fault
has occured.

422 Chapter 2. MRF Timing System Reference

INDEX

E
EnablePLL, 422

423

	EPICS Record Reference Manual
	EPICS Process Database Concepts
	The EPICS Process Database
	Database Functionality Specification
	Scanning Specification
	Periodic Scanning
	Event Scanning
	I/O Interrupt Events
	User-defined Events
	Passive Scanning
	Channel Access Puts to Passive Scanned Records
	Database Links to Passive Record
	Forward Links
	Process Chains

	Channel Access Links
	Channel Access Input Links
	Channel Access Output Links
	Channel Access Forward Links

	Maximize Severity Attribute
	Phase
	PVAccess Links
	pv: Target PV name
	field: Structure field name
	local: Require local PV
	Q: Monitor queue depth
	pipeline: Monitor flow control
	proc: Request record processing (side-effects)
	sevr: Alarm propagation
	time: Time propagation
	monorder: Monitor processing order
	defer: Defer put
	retry: Put while disconnected
	always: CP/CPP always process
	Link semantics/behavior

	Address Specification
	Hardware Addresses
	INST
	VME Bus
	Allen-Bradley Bus
	Camac Bus
	Others

	Database Addresses
	Constants

	Conversion Specification
	Discrete Conversions
	Analog Conversions
	Linear Conversions
	Transducer Matches the I/O module
	Transducer Lower than the I/O module
	Transducer Positive and I/O module bipolar
	Combining Linear Conversion with an Amplifier

	Breakpoint Conversions
	Breakpoint Table
	Breakpoint Conversion Example
	Creating Breakpoint Tables

	Alarm Specification
	Alarm Severity
	Alarm Status
	Alarm Conditions Configured in the Database
	Limit Alarms
	State Alarms

	Alarm Handling

	Monitor Specification
	Rate Limits
	Channel Access Deadband Selection
	Value Change Monitors
	Archive Change Monitors
	Alarm Change Monitors
	Metadata Changes

	Client specific Filtering
	Event Filtering
	Rate Guarantee
	Rate Limit
	Value Change

	Control Specification
	Closing an Analog Control Loop
	Configuring an Interlock

	Fields Common to All Record Types
	Operator Display Parameters
	Scan Fields
	Alarm Fields
	Device Fields
	Debugging Fields
	Miscellaneous Fields

	Fields Common to Input Record Types
	Input and Value Fields
	Device Input
	Device Support for Soft Records
	Input Simulation Fields
	Simulation Mode for Input Records

	Fields Common to Output Record Types
	Output and Value Fields
	Device Support for Soft Records
	Input and Mode Select Fields
	Output Mode Selection
	Invalid Output Action Fields
	Invalid Alarm Output Action
	Output Simulation Fields
	Simulation Mode for Output Records

	EPICS Record Types
	Analog Input Record (ai)
	Parameter Fields
	Input Specification
	Units Conversion
	Smoothing Filter
	Undefined Check
	Operator Display Parameters
	Alarm Limits
	Monitor Parameters
	Simulation Mode Parameters

	Device Support Interface
	Device Support Routines
	Extended Device Support

	Analog Output Record (ao)
	Record-specific Menus
	Menu aoOIF

	Parameter Fields
	Output Value Determination
	Fetch Value, Integrate
	Drive Limits
	Limit Rate of Change

	Units Conversion
	Conversion Related Fields and the Conversion Process

	Output Specification
	Operator Display Parameters
	Alarm Parameters
	Monitor Parameters
	Run-time Parameters
	Simulation Mode Parameters

	Record Support
	Record Support Routines
	Record Processing

	Device Support
	Fields Of Interest To Device Support
	Device Support routines

	Device Support For Soft Records
	Soft Channel
	Raw Soft Channel

	Array Subroutine Record (aSub)
	Record-specific Menus
	Menu aSubLFLG
	Menu aSubEFLG

	Parameter Fields
	Subroutine Fields
	Operator Display Parameters
	Output Event Flag
	Input Link Fields
	Input Value Fields
	Input Value Data Types
	Input Value Array Capacity
	Input Value Array Size
	Output Link Fields
	Output Value Fields
	Old Value Fields
	Output Value Data Types
	Output Value Array Capacity
	Output Value Array Size
	Old Value Array Size

	Record Support Routines
	init_record
	process

	Use of the aSub Record
	Example database fragment
	Example subroutine fragment
	Required export code
	Required database-definition code
	Device support, writing to hardware
	Dynamically Changing the User Routine called during Record Processing

	Array Analog Input (aai)
	Parameter Fields
	Scan Parameters
	Read Parameters
	Fields related to waveform reading

	Operator Display Parameters
	Fields related to Operator Display

	Alarm Parameters
	Monitor Parameters
	Menu aaiPOST

	Run-time Parameters
	Simulation Mode Parameters

	Record Support
	Record Support Routines
	init_record
	process
	cvt_dbaddr
	get_array_info
	put_array_info
	get_units
	get_prec
	get_graphic_double
	get_control_double

	Record Processing

	Device Support
	Fields Of Interest To Device Support
	Device Support Routines
	report
	init
	init_record
	get_ioint_info
	read_aai

	Device Support For Soft Records

	Array Analog Output (aao)
	Parameter Fields
	Scan Parameters
	Write Parameters
	Fields related to array writing

	Operator Display Parameters
	Fields related to Operator Display

	Alarm Parameters
	Monitor Parameters
	Record fields related to Monitor Parameters
	Menu aaoPOST

	Run-time Parameters
	Fetch Value

	Simulation Mode Parameters

	Record Support
	Record Support Routines
	init_record
	process
	cvt_dbaddr
	get_array_info
	put_array_info
	get_units
	get_prec
	get_graphic_double
	get_control_double

	Record Processing

	Device Support
	Fields Of Interest To Device Support
	Device Support Routines
	report
	init
	init_record
	get_ioint_info
	write_aao

	Device Support For Soft Records

	Binary Input Record (bi)
	Parameter Fields
	Scan Parameters
	Read and Convert Parameters
	Conversion Fields
	Operator Display Parameters
	Alarm Parameters
	Run-time Parameters
	Simulation Mode Parameters

	Record Support
	Record Support Routines

	Record Processing
	Device Support
	Fields of Interest to Device Support
	Device Support routines
	Device Support for Soft Records
	Soft Channel
	Raw Soft Channel

	Binary Output Record (bo)
	Scan Parameters
	Desired Output Parameters
	Convert and Write Parameters
	Conversion Parameters
	Output Specification
	Operator Display Parameters
	Alarm Parameters
	Run-Time Parameters
	Simulation Mode Parameters
	Record Support
	Record Support Routines

	init_record
	process
	get_enum_str
	get_enum_strs
	put_enum_str
	Record Processing
	Device support
	Fields Of Interest To Device Support
	Device Support Routines
	long report(int level)
	long init(int after)

	init_record(precord)
	get_ioint_info(int cmd, struct dbCommon *precord, IOSCANPVT *ppvt)
	write_bo(precord)
	Device Support For Soft Records
	Soft Channel
	Raw Soft Channel

	Calculation Record (calc)
	Parameter Fields
	Scan Parameters
	Read Parameters
	Expression
	Literals
	Constants
	Operands
	Algebraic Operators
	Trigonometric Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Assignment Operator
	Parantheses, Comma, and Semicolon
	Conditional Expression
	Expression Examples
	Algebraic
	Relational
	Question Mark

	Result is E if (A + B)<(C + D)
	Logical
	Assignment
	Operator Display Parameters
	Alarm Parameters
	Monitor Parameters
	Run-time Parameters

	Record Support
	Record Support Routines

	init_record
	process
	special
	get_units
	get_precision
	get_graphic_double
	get_control_double
	get_alarm_double
	Record Processing

	Calculation Output Record (calcout)
	Parameter Fields
	Scan Parameters
	Read Parameters
	Expression
	Literals
	Constants
	Operands
	Algebraic Operations
	Trigonometric Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Assignment Operator
	Parentheses, Comma, and Semicolon
	Conditional Expression
	Expression Examples
	Algebraic
	Relational
	Question Mark

	Result is E if (A + B)<(C + D)
	Logical
	Assignment
	Output Parameters
	Menu calcoutOOPT
	Menu calcoutDOPT

	Operator Display Parameter
	Menu calcoutINAV

	Alarm Parameters
	Monitor Parameters
	Run-time Parameters

	Record Support
	Record Support Routines

	init_record
	process
	special
	get_units
	get_precision
	get_graphic_double
	get_control_double
	get_alarm_double
	Record Processing

	process()
	execOutput()

	Compression Record (compress)
	Record-specific Menus
	Menu compressALG
	Menu bufferingALG

	Parameter Fields
	Parameter Fields
	Scanning Parameters
	Algorithms and Related Parameters
	Menu compressALG
	Algorithms

	Operator Display Parameters
	Alarm Parameters
	Run-time Parameters

	Record Support
	Record Support Routines
	Record Processing

	Data Fanout Record (dfanout)
	Parameter Fields
	Scan Parameters
	Desired Output Parameters
	Write Parameters
	Menu dfanoutSELM

	Operator Display Parameters
	Alarm Parameters
	Monitor Parameters
	Run-Time Parameters and Simulation Mode Parameters

	Record Support
	Record Support Routines

	init_record()
	process()
	get_units()
	get_graphic_double()
	get_control_double()
	get_alarm_double()
	Record Processing

	Event Record (event)
	Parameter Fields
	Scan Parameters
	Event Number Parameters
	Input Specification
	Operator Display Parameters
	Alarm Parameters
	Simulation Mode Parameters

	Record Support
	Record Support Routines
	init_record
	process

	Record Processing

	Device Support
	Fields of Interest To Device Support
	Device Support Routines
	long report(int level)
	long init(int after)
	init_record
	get_ioint_info
	read_event

	Device Support For Soft Records

	Fanout Record (fanout)
	Parameter Fields
	Scan Parameters
	Operator Display Parameters
	Alarm Parameters
	Run-time Parameters

	Record Support
	Record Support Routines
	init_record
	process

	Record Processing

	Histogram Record (histogram)
	Parameter Fields
	Read Parameters
	Operator Display Parameters
	Alarm Parameters
	Monitor Parameters
	Run-time and Simulation Mode Parameters

	Record Support
	Record Support Routines
	init_record
	process
	special
	cvt_dbaddr
	get_array_info
	put_array_info

	Record Processing

	Device Support
	Fields Of Interest To Device Support
	Device Support Routines
	long report(int level)
	long init(int after)
	init_record
	read_histogram

	Device Support For Soft Records
	Soft Channel

	64bit Integer Input Record (int64in)
	Parameter Fields
	Input Specification
	Operator Display Parameters
	Alarm Limits
	Monitor Parameters
	Simulation Mode Parameters

	Record Support
	Record Support Routines
	init_record
	process

	Record Processing

	Device Support
	Device Support Interface
	Device Support Routines
	long report(int level)
	long init(int after)
	long init_record(int64inRecord *prec)
	long get_ioint_info(int cmd, int64inRecord *prec, IOSCANPVT *piosl)
	long read_int64in(int64inRecord *prec)

	Extended Device Support

	Device Support For Soft Records
	Soft Channel
	Soft Callback Channel

	64bit Integer Output Record (int64out)
	Parameter Fields
	Output Value Determination
	Fetch Value
	Drive Limits

	Output Specification
	Operator Display Parameters
	Alarm Limits
	Monitor Parameters
	Simulation Mode Parameters
	Invalid Alarm Output Action

	Record Support
	Record Support Routines
	init_record
	process

	Record Processing

	Device Support
	Device Support Interface
	Device Support Routines
	long report(int level)
	long init(int after)
	long init_record(int64outRecord *prec)
	long get_ioint_info(int cmd, int64outRecord *prec, IOSCANPVT *piosl)
	long write_int64out(int64outRecord *prec)

	Extended Device Support

	Device Support For Soft Records
	Soft Channel
	Soft Callback Channel

	Long Input Record (longin)
	Parameter Fields
	Scan Parameters
	Read Parameters
	Operator Display Parameters
	Alarm Parameters
	Monitor Parameters
	Run-time Parameters
	Simulation Mode Parameters

	Record Support
	Record Support Routines
	init_record
	process
	get_units
	get_graphic_double
	get_control_double
	get_alarm_double

	Record Processing

	Device Support
	Fields Of Interest To Device Support
	Device Support Routines
	long report(int level)
	long init(int after)
	init_record
	get_ioint_info
	read_longin

	Device Support For Soft Records

	Long Output Record (longout)
	Parameter Fields
	Scan Parameters
	Desired Output Parameters
	Write Parameters
	Operator Display Parameters
	Alarm Parameters
	Monitor Parameters
	Run-time Parameters
	Simulation Mode Parameters

	Record Support
	Record Support Routines
	init_record
	process
	get_units
	get_graphic_double
	get_control_double
	get_alarm_double

	Record Processing

	Device Support
	Fields Of Interest To Device Support
	Device Support Routines
	long report(int level)
	long init(int after)
	init_record
	get_ioint_info
	write_longout

	Device Support For Soft Records

	Long String Input Record (lsi)
	Parameter Fields
	Scan Parameters
	Input Specification
	Monitor Parameters
	Operator Display Parameters
	Alarm Parameters
	Run-time Parameters
	Simulation Mode Parameters

	Device Support Interface
	Device Support for Soft Records

	Long String Output Record (lso)
	Parameter Fields
	Scan Parameters
	Desired Output Parameters
	Output Specification
	Monitor Parameters
	Operator Display Parameters
	Alarm Parameters
	Run-time Parameters
	Simulation Mode Parameters

	Device Support Interface
	Device Support for Soft Records

	Multi-Bit Binary Input Direct Record (mbbiDirect)
	Parameter Fields
	Scan Parameters
	Read and Convert Parameters
	Operator Display Parameters
	Run-time Parameters
	Simulation Mode Parameters
	Alarm Parameters

	Record Support
	Record Support Routines
	init_record
	process

	Record Processing

	Device Support
	Fields Of Interest To Device Support
	Device Support Routines
	long report(int level)
	long init(int after)
	init_record
	get_ioint_info
	read_mbbiDirect

	Device Support For Soft Records
	Soft Channel
	Raw Soft Channel

	Multi-Bit Binary Input Record (mbbi)
	Parameter Fields
	Scan Parameters
	Read and Convert Parameters
	Operator Display Parameters
	Alarm Parameters
	Run-time Parameters
	Simulation Mode Parameters

	Record Support
	Record Support Routines
	init_record
	process
	special
	get_enum_str
	get_enum_strs
	put_enum_str

	Record Processing

	Device Support
	Fields Of Interest To Device Support
	Device Support Routines
	long report(int level)
	long init(int after)
	init_record
	get_ioint_info
	read_mbbi

	Device Support For Soft Records
	Soft Channel
	Raw Soft Channel

	Multi-Bit Binary Output Direct Record (mbboDirect)
	Parameter Fields
	Scan Parameters
	Desired Output Parameters
	Bit Fields

	Convert and Write Parameters
	Operator Display Parameters
	Run-time Parameters
	Simulation Mode Parameters
	Alarm Parameters

	Record Support
	Record Support Routines
	init_record
	Process

	Record Processing

	Device Support
	Fields Of Interest To Device Support
	Device Support Routines
	long report(int level)
	long init(int after)
	init_record
	get_ioint_info
	write_mbboDirect

	Device Support For Soft Records

	Multi-Bit Binary Output Record (mbbo)
	Parameter Fields
	Scan Parameters
	Desired Output Parameters
	Convert and Write Parameters
	Operator Display Parameters
	Alarm Parameters
	Run-Time Parameters
	Simulation Mode Parameters

	Record Support
	Record Support Routines
	init_record
	process
	special
	get_value
	get_enum_str
	get_enum_strs
	put_enum_str

	Record Processing

	Device Support
	Fields Of Interest To Device Support
	Device Support Routines
	long report(int level)
	long init(int after)
	init_record
	get_ioint_info
	write_mbbo

	Device Support For Soft Records
	Soft Channel
	Raw Soft Channel

	Permissive Record (permissive)
	Parameter Fields
	Scan Parameters
	Client-server Parameters
	Operator Display Parameters
	Alarm Parameters
	Run-time Parameters

	Record Support
	Record Support Routines
	process

	Printf Record (printf)
	Parameter Fields
	Scan Parameters
	String Generation Parameters
	Output Specification
	Operator Display Parameters
	Alarm Parameters

	Device Support Interface
	Device Support for Soft Records

	Select Record (sel)
	Parameter Fields
	Scan Parameters
	Read Parameters
	Select Parameters
	Menu selSELM

	Operator Display Parameters
	Alarm Parameters
	Monitor Parameters
	Run-time Parameters

	Record Support
	Record Support Routines
	init_record
	process
	get_units
	get_precision
	get_graphic_double
	get_control_double
	get_alarm_double

	Record Processing

	Sequence Record (seq)
	Parameter Fields
	Scan Parameters
	Desired Output Parameters
	Desired Output Link Fields
	Desired Output Value Fields

	Output Parameters
	Selection Algorithm Parameters
	Record fields related to the Selection Algorithm
	Fields Description
	Note about SHFT and OFFS fields
	Selection Algorithms Description

	Delay Parameters
	Operator Display Parameters
	Alarm Parameters

	Record Support
	Record Processing

	State Record (state)
	Parameter Fields
	Scan Parameters
	Operator Display Parameters
	Alarm Parameters
	Run-time Parameters

	Record Support
	Record Support Routines
	process

	String Input Record (stringin)
	Parameter Fields
	Scan Parameters
	Input Specification
	Monitor Parameters
	Menu stringinPOST

	Operator Display Parameters
	Alarm Parameters
	Run-time Parameters
	Simulation Mode Parameters

	Record Support
	Record Support Routines
	init_record
	process

	Record Processing

	Device Support
	Fields Of Interest To Device Support
	Device Support Routines
	report
	init
	init_record
	get_ioint_info
	read_stringin

	Device Support for Soft Records

	String Output Record (stringout)
	Parameter Fields
	Scan Parameters
	Desired Output Parameters
	Output Specification
	Monitor Parameters
	Menu stringoutPOST

	Operator Display Parameters
	Run-time Parameters
	Simulation Mode Parameters
	Alarm Parameters

	Record Support
	Record Support Routines
	init_record
	process

	Record Processing

	Device Support
	Fields Of Interest To Device Support
	Device Support Routines
	report
	init
	init_record
	get_ioint_info
	write_stringout

	Device Support for Soft Records

	Sub-Array Record (subArray)
	Parameter Fields
	Scan Parameters
	Read Parameters
	Array Parameters
	Operator Display Parameters
	Alarm Parameters
	Run-time Parameters

	Record Support
	Record Support Routines
	init_record
	process
	cvt_dbaddr
	get_array_info
	put_array_info
	get_graphic_double
	get_control_double
	get_units
	get_precision

	Record Processing

	Device Support
	Fields Of Interest To Device Support
	Device Support Routines (devSASoft.c)
	long report(int level)
	long init(int after)
	init_record
	read_sa

	Device Support For Soft Records
	Soft Channel

	Subroutine Record (sub)
	Parameter Fields
	Scan Parameters
	Read Parameters
	Subroutine Connection
	Operator Display Parameters
	Alarm Parameters
	Monitor Parameters
	Run-time Parameters

	Record Support
	Record Support Routines
	init_record
	process
	get_units
	get_precision
	get_graphic_double
	get_control_double
	get_alarm_double

	Record Processing
	Example Synchronous Subroutine
	Example Asynchronous Subroutine

	Waveform Record (waveform)
	Parameter Fields
	Scan Parameters
	Read Parameters
	Fields related to waveform reading

	Operator Display Parameters
	Fields related to Operator Display

	Alarm Parameters
	Monitor Parameters
	Menu waveformPOST

	Run-time Parameters
	Simulation Mode Parameters

	Record Support
	Record Support Routines
	init_record
	process
	cvt_dbaddr
	get_array_info
	put_array_info
	get_units
	get_prec
	get_graphic_double
	get_control_double

	Record Processing

	Device Support
	Fields Of Interest To Device Support
	Device Support Routines
	report
	init
	init_record
	get_ioint_info
	read_wf

	Device Support For Soft Records

	MRF Timing System Reference
	The MRF Timing System
	Timing System Principle of Operation
	Event Stream

	Event Generator Overview
	Timing Events
	Event Codes

	Sources for timing events
	Trigger Signal Inputs
	Event Sequencer
	Uses for the sequencer

	Software-generated Events
	Upstream Events

	Distributed Bus
	Timestamping support
	Timestamp Generator
	External hardware
	Time from an NTP server

	Synchronous Data buffer
	Utility Functions in the Event Generator
	Multiplexed Counters
	AC Line Synchronisation

	Event Clock RF Source

	Event Receiver Overview
	Functional Description
	Event Decoding
	Heartbeat Monitor
	Event FIFO and Timestamp Events
	Event Log
	Distributed Bus and Data Transmission
	Pulse Generators
	Prescalers
	Programmable Front Panel, Universal I/O and Backplane Connections
	Flip-flop Outputs (from FW version 0E0207)
	Front Panel Universal I/O Slots
	Synchronous Data Transmission
	Segmented Data Buffer

	External Event Input

	Delay Compensation
	Topology ID
	Active Delay Compensation
	Timing System Master
	Timing System Fan-Out
	Timing System Event Receiver

	Examples of usage scenarios
	Setting Up a Event System with Delay Compensation
	Initializing Master EVG
	Initializing VME-EVM-300 as Fan-Out
	Initializing VME-EVR-300

	Generating an Event from AC input
	Receiving an Event and Generating an Output Pulse
	Event Receiver Standalone Operation

	Event Master
	Fanout and Concentrator
	Event Generator
	Event Generation
	Trigger Signal Inputs
	Event Sequencer
	Sequencer Interrupt Support
	Uses for the sequencer

	Software-generated Events
	Upstream Events

	Distributed Bus
	Timestamping support
	Timestamp Generator
	Standard (aka “Light Source”) Time Model
	External hardware
	Time from an NTP server
	Timestamping Inputs

	Configurable Size Data Buffer
	Segmented Data Buffer Transmission
	Delay Compensation and Topology ID data

	Programmable Outputs
	Utility Functions in the Event Generator
	Multiplexed Counters
	AC Line Synchronisation

	Front Panel TTL Input with Phase Monitoring
	Event Clock RF Source
	RF Clock and Event Clock
	Fractional Synthesiser (EVM, distribution layer)

	Delay Compensation
	Topology ID
	Active Delay Compensation
	Timing System Master
	Timing System Fan-Out

	EVG Function Register Map
	Register descriptions
	Status Register
	Control Register
	Interrupt Flag Register
	Interrupt Enable Register
	AC Trigger Control Register
	AC Trigger Mapping Register
	Software Event Register
	Segmented Data Buffer Control Register
	Data Buffer Control Register
	Distributed Bus Mapping Register
	Distributed Bus Event Enable Register
	FPGA Firmware Version Register
	Timestamp Generator Control Register
	Microsecond Divider Register
	Clock Control Register
	Event Analyser Control Register
	Sequence RAM Control Registers
	SY87739L Fractional Divider Configuration Word
	SPI Configuration Flash Registers
	Event Trigger Registers
	Multiplexed Counter Registers
	Transition Board Output Mapping Registers
	Front Panel Input Mapping Registers

	Front Panel Input Phase Monitoring Registers
	Transition Board Input Mapping Registers

	Embedded Event Receivers

	MTCA-EVM-300
	TTL Input Levels
	Register Mapping

	EVM Firmware Version Change Log
	FCT Function Register Map
	Status Register
	Control Register

	Event Receiver
	Functional Description
	Event Decoding
	Function mapping

	Heartbeat Monitor
	Event FIFO and Timestamp Events
	Event Log
	Distributed Bus and Data Transmission
	Pulse Generators
	Pulse Generator Gates

	Prescalers
	Programmable Front Panel, Universal I/O and Backplane Connections
	Flip-flop Outputs (from FW version 0E0207)
	Front Panel Universal I/O Slots
	GTX Pulse Mode
	GTX Frequency Mode
	GTX Pattern Mode
	Configurable Size Data Buffer (EVR)
	Segmented Data Buffer
	Interrupt Generation
	External Event Input
	Programmable Reference Clock
	Fractional Synthesiser

	MTCA-EVR-300
	VME-EVR-300
	VME-EVR-300 Front Panel Connections
	VME TTL Input Levels

	Event Receiver Registermap
	Register Map
	Status Register
	Control Register
	Interrupt Flag Register
	Interrupt Enable Register
	Hardware Interrupt Mapping Register
	Flip-flop Outputs (from FW version 0E0207)

	Software Event Register
	PCI Interrupt Enable Register
	Receive Data Buffer Control and Status Register
	Transmit Data Buffer Control Register
	Transmit Segemented Data Buffer Control Register

	FPGA Firmware Version Register
	Clock Control Register
	Event FIFO
	SY87739L Fractional Divider Configuration Word

	SPI Configuration Flash Registers
	Delay Compensation Status Register
	Sequence RAM Control Register
	Prescaler Pulse Trigger Registers
	Distributed Bus Pulse Trigger Registers
	Pulse Generator Registers
	Input Mapping Registers
	Data Buffer Segment Interrupt Enable Register
	Data Buffer Checksum Flag Register
	Data Buffer Overflow Flag Register

	Data Buffer Receive Flag Register
	SFP Module EEPROM and Diagnostics
	Hardware Configuration Summary
	PCIe-EVR-300DC and IFB-300 Connections
	mTCA-EVR-300 Connections
	PCIe-EVR-300DC Firmware Upgrade

	EVR Firmware Version Change Log
	Epics device driver for MRF Event Generator (EVG)
	The Source
	IOC Deployment
	VMEbus based hardware
	PCI or PCIe based hardware

	Classes/Sub-Components
	EVG
	Global EVG Options:
	Event Clock
	Timestamping
	Timestamping at EVG:
	Records associated with EVG time stamping:

	Software Events
	Trigger Events
	Distributed bus
	Multiplexed Counter
	Input
	Output
	AC Trigger
	Event Sequencer

	Functional block diagram of device support for event sequencer
	Acknowledgment

	EVG Device Support Reference

	EPICS device driver for MRF Event Receiver (EVR)
	What is Available?
	Prerequisites
	Build system required modules
	Build system optional modules. Not required, but highly recommended.
	Target operating system requirements
	Source
	Supported Hardware

	Overview of the Driver
	Receiver Functions
	Pulse Generators
	Event Mapping Ram
	Prescalers (Clock Divider)
	Outputs (TTL)
	Outputs (CML and GTX)
	Inputs
	Global Timestamp Reception
	Data Buffer Tx/Rx

	IOC Deployment
	Device names

	VME64x Device Configuration
	PCI Device Configuration
	PCI Setup in Linux

	Example Databases
	autosave

	Testing Procedures
	EVG and EVR Checkout
	Timestamp Test

	Firmware Update
	300-series Devices
	VME EVRs and EVGs
	cPCI-EVRTG-300
	PMC-EVR-230
	Creating an SVF file from a BIT file
	Programming with UrJTAG

	NTPD Time Source
	Buffered Timestamp Capture
	Implementation Details
	Event code FIFO Buffer
	Data Buffer reception
	Timestamp validation

	EVR Device Support Reference
	Global Properties
	PLL Lock Status
	Link Status
	Timestamp Valid
	Model
	Version
	Sw Version
	FIFO Overflow Count
	FIFO Over rate
	Clock
	Timestamp Sources
	Timestamp Clock
	Timestamp Prescaler
	Timestamp
	Event Clock TS Div
	Receive Error Count

	Pulse Generator
	Enable
	Polarity
	Prescaler
	Delay
	Width
	Prescaler (Clock Divider)
	Divide

	Output (TTL and CML)
	Map

	Output (CML only)
	Enable
	Power
	Reset
	Mode
	Pat Rise/High/Fall/Low
	Freq Trig Lvl
	Counts High/Low

	Input
	Active Level
	Active Edge
	External Mode
	External Code
	Backwards Mode
	Backwards Code
	DBus Mask

	Event Mapping
	Pulse Generator Mapping
	Special Function Mapping

	Database Events
	Data Buffer Rx
	Enable Data
	Data Rx

	Data Buffer Tx
	Outgoing Event Data Mode
	Data Tx
	Per-device Database Files
	Special Database Files

	Index

